Loading…
Challenging low Reynolds - SWT blade aerodynamics
One of the main issues related to the design and development of small wind turbines (SWTs) is the low Reynolds number. Operation in the transitory regime makes the rotor aerodynamic analysis a challenging task. Project GUST (Generative Urban Small Turbine) realized currently at the Institute of Turb...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the main issues related to the design and development of small wind turbines (SWTs) is the low Reynolds number. Operation in the transitory regime makes the rotor aerodynamic analysis a challenging task. Project GUST (Generative Urban Small Turbine) realized currently at the Institute of Turbomachinery (Lodz University of Technology, Poland) is devoted to the development of SWT (
D
= 1.6 m) for low-Reynolds number (low wind speed) flow conditions. The emphasis is on the blade design, aiming at improving the rotor aerodynamic efficiency. The paper will highlight the rotor design process, based on contemporary methods of experiment-simulation integration approach and use of rapid manufacturing techniques. In-house wind tunnel measurements of a scaled model performance were executed. A numerical analysis using dedicated software (QBlade) was conducted in parallel. A comparison between the obtained results indicated that the chosen numerical tools are capable of providing a reliable output, even in complex, transitional flow conditions. Bearing in mind the above observations, QBlade was incorporated into the development process of a completely new blade geometry which would increase rotor performance. The selected design has indeed prove to show better power outcome in an additional experimental campaign. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201823401004 |