Loading…

The Mechanism of Hot Spots Caused by Avalanche Breakdown in Gallium-Doped PERC Solar Cells

Gallium-doped p-type passivated emitter and rear contact (PERC) solar cells, which eliminate light-induced degradation (LID) and reduce the impact of light- and elevated-temperature-induced degradation (LeTID), have completely replaced boron-doped p-type PERC cells. However, in previous experiments,...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-03, Vol.16 (6), p.2699
Main Authors: Ge, Huayun, Li, Xing, Guo, Chunlin, Luo, Wei, Jia, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gallium-doped p-type passivated emitter and rear contact (PERC) solar cells, which eliminate light-induced degradation (LID) and reduce the impact of light- and elevated-temperature-induced degradation (LeTID), have completely replaced boron-doped p-type PERC cells. However, in previous experiments, we found hot spots in the center of gallium-doped PERC solar cells. In this study, it was found that gallium-doped PERC cells had uneven resistivity, which caused hot spots brought about by the avalanche breakdown of PN junctions. There were significant hot spots in the center of the tested cells, with an average resistivity of 0.4–0.5 Ωcm and nonuniformity greater than 30%, or at an average resistivity of 0.5–0.6 Ωcm with nonuniformity greater than 40%. In this paper we describe and study in detail hot spots triggered by the uneven resistivity of gallium-doped cells and analyze the causes and related influencing factors, thereby providing guidance and a reference for the improvement of the performance and reliability of gallium-doped PERC solar cells.
ISSN:1996-1073
1996-1073
DOI:10.3390/en16062699