Loading…
A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection
As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based method...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (8), p.1908 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73 |
container_end_page | |
container_issue | 8 |
container_start_page | 1908 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 14 |
creator | Feng, Yun Chen, Jie Huang, Zhixiang Wan, Huiyao Xia, Runfan Wu, Bocai Sun, Long Xing, Mengdao |
description | As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods. |
doi_str_mv | 10.3390/rs14081908 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_625235c7b3ce4d2599b72edd146d7af4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_625235c7b3ce4d2599b72edd146d7af4</doaj_id><sourcerecordid>2653023664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWLQXf8GCNyG6n9nsMdRWCwHF6nnZ7M42KW22blLEf29iRZ3DzDC888zwJskVwbeMKXwXO8JxThTOT5IJxZKmnCp6-q8_T6Zdt8FDMDbo-CQpC1Q267r_gDGj59A1fRPadN7WprXgUNHaOsR0EQFQsV2H2PT1DvkQ0ap4Qau62aN76MGOW5fJmTfbDqY_9SJ5W8xfZ49p-fSwnBVlaqkifWqFJ4YRyFRlFZEsd9hlQGgO2Hnuc06ElNhyITiTTlhlia9sZRwFcLSS7CJZHrkumI3ex2Zn4qcOptHfgxDX2sS-sVvQGRWUCSsrZoE7KpSqJAXnCM-cNJ4PrOsjax_D-wG6Xm_CIbbD-5pmgmHKsmxU3RxVNoaui-B_rxKsR_P1n_nsCywZdTE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653023664</pqid></control><display><type>article</type><title>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</title><source>ProQuest - Publicly Available Content Database</source><creator>Feng, Yun ; Chen, Jie ; Huang, Zhixiang ; Wan, Huiyao ; Xia, Runfan ; Wu, Bocai ; Sun, Long ; Xing, Mengdao</creator><creatorcontrib>Feng, Yun ; Chen, Jie ; Huang, Zhixiang ; Wan, Huiyao ; Xia, Runfan ; Wu, Bocai ; Sun, Long ; Xing, Mengdao</creatorcontrib><description>As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14081908</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Backscattering ; Clutter ; Deep learning ; False alarms ; Lightweight ; lightweight backbone ; Machine learning ; Microbalances ; Neural networks ; position-enhanced attention ; Probability distribution ; Remote sensing ; SAR ship detection ; Scattering ; Synthetic aperture radar ; Target detection ; Wavelet transforms</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (8), p.1908</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</citedby><cites>FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2653023664/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2653023664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Wan, Huiyao</creatorcontrib><creatorcontrib>Xia, Runfan</creatorcontrib><creatorcontrib>Wu, Bocai</creatorcontrib><creatorcontrib>Sun, Long</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><title>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</title><title>Remote sensing (Basel, Switzerland)</title><description>As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Backscattering</subject><subject>Clutter</subject><subject>Deep learning</subject><subject>False alarms</subject><subject>Lightweight</subject><subject>lightweight backbone</subject><subject>Machine learning</subject><subject>Microbalances</subject><subject>Neural networks</subject><subject>position-enhanced attention</subject><subject>Probability distribution</subject><subject>Remote sensing</subject><subject>SAR ship detection</subject><subject>Scattering</subject><subject>Synthetic aperture radar</subject><subject>Target detection</subject><subject>Wavelet transforms</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhoMoWLQXf8GCNyG6n9nsMdRWCwHF6nnZ7M42KW22blLEf29iRZ3DzDC888zwJskVwbeMKXwXO8JxThTOT5IJxZKmnCp6-q8_T6Zdt8FDMDbo-CQpC1Q267r_gDGj59A1fRPadN7WprXgUNHaOsR0EQFQsV2H2PT1DvkQ0ap4Qau62aN76MGOW5fJmTfbDqY_9SJ5W8xfZ49p-fSwnBVlaqkifWqFJ4YRyFRlFZEsd9hlQGgO2Hnuc06ElNhyITiTTlhlia9sZRwFcLSS7CJZHrkumI3ex2Zn4qcOptHfgxDX2sS-sVvQGRWUCSsrZoE7KpSqJAXnCM-cNJ4PrOsjax_D-wG6Xm_CIbbD-5pmgmHKsmxU3RxVNoaui-B_rxKsR_P1n_nsCywZdTE</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Feng, Yun</creator><creator>Chen, Jie</creator><creator>Huang, Zhixiang</creator><creator>Wan, Huiyao</creator><creator>Xia, Runfan</creator><creator>Wu, Bocai</creator><creator>Sun, Long</creator><creator>Xing, Mengdao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20220401</creationdate><title>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</title><author>Feng, Yun ; Chen, Jie ; Huang, Zhixiang ; Wan, Huiyao ; Xia, Runfan ; Wu, Bocai ; Sun, Long ; Xing, Mengdao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Backscattering</topic><topic>Clutter</topic><topic>Deep learning</topic><topic>False alarms</topic><topic>Lightweight</topic><topic>lightweight backbone</topic><topic>Machine learning</topic><topic>Microbalances</topic><topic>Neural networks</topic><topic>position-enhanced attention</topic><topic>Probability distribution</topic><topic>Remote sensing</topic><topic>SAR ship detection</topic><topic>Scattering</topic><topic>Synthetic aperture radar</topic><topic>Target detection</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Wan, Huiyao</creatorcontrib><creatorcontrib>Xia, Runfan</creatorcontrib><creatorcontrib>Wu, Bocai</creatorcontrib><creatorcontrib>Sun, Long</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yun</au><au>Chen, Jie</au><au>Huang, Zhixiang</au><au>Wan, Huiyao</au><au>Xia, Runfan</au><au>Wu, Bocai</au><au>Sun, Long</au><au>Xing, Mengdao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1908</spage><pages>1908-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14081908</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (8), p.1908 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_625235c7b3ce4d2599b72edd146d7af4 |
source | ProQuest - Publicly Available Content Database |
subjects | Accuracy Algorithms Backscattering Clutter Deep learning False alarms Lightweight lightweight backbone Machine learning Microbalances Neural networks position-enhanced attention Probability distribution Remote sensing SAR ship detection Scattering Synthetic aperture radar Target detection Wavelet transforms |
title | A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Position-Enhanced%20Anchor-Free%20Algorithm%20for%20SAR%20Ship%20Detection&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Feng,%20Yun&rft.date=2022-04-01&rft.volume=14&rft.issue=8&rft.spage=1908&rft.pages=1908-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14081908&rft_dat=%3Cproquest_doaj_%3E2653023664%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653023664&rft_id=info:pmid/&rfr_iscdi=true |