Loading…

A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection

As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based method...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (8), p.1908
Main Authors: Feng, Yun, Chen, Jie, Huang, Zhixiang, Wan, Huiyao, Xia, Runfan, Wu, Bocai, Sun, Long, Xing, Mengdao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73
cites cdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73
container_end_page
container_issue 8
container_start_page 1908
container_title Remote sensing (Basel, Switzerland)
container_volume 14
creator Feng, Yun
Chen, Jie
Huang, Zhixiang
Wan, Huiyao
Xia, Runfan
Wu, Bocai
Sun, Long
Xing, Mengdao
description As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.
doi_str_mv 10.3390/rs14081908
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_625235c7b3ce4d2599b72edd146d7af4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_625235c7b3ce4d2599b72edd146d7af4</doaj_id><sourcerecordid>2653023664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWLQXf8GCNyG6n9nsMdRWCwHF6nnZ7M42KW22blLEf29iRZ3DzDC888zwJskVwbeMKXwXO8JxThTOT5IJxZKmnCp6-q8_T6Zdt8FDMDbo-CQpC1Q267r_gDGj59A1fRPadN7WprXgUNHaOsR0EQFQsV2H2PT1DvkQ0ap4Qau62aN76MGOW5fJmTfbDqY_9SJ5W8xfZ49p-fSwnBVlaqkifWqFJ4YRyFRlFZEsd9hlQGgO2Hnuc06ElNhyITiTTlhlia9sZRwFcLSS7CJZHrkumI3ex2Zn4qcOptHfgxDX2sS-sVvQGRWUCSsrZoE7KpSqJAXnCM-cNJ4PrOsjax_D-wG6Xm_CIbbD-5pmgmHKsmxU3RxVNoaui-B_rxKsR_P1n_nsCywZdTE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653023664</pqid></control><display><type>article</type><title>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</title><source>ProQuest - Publicly Available Content Database</source><creator>Feng, Yun ; Chen, Jie ; Huang, Zhixiang ; Wan, Huiyao ; Xia, Runfan ; Wu, Bocai ; Sun, Long ; Xing, Mengdao</creator><creatorcontrib>Feng, Yun ; Chen, Jie ; Huang, Zhixiang ; Wan, Huiyao ; Xia, Runfan ; Wu, Bocai ; Sun, Long ; Xing, Mengdao</creatorcontrib><description>As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs14081908</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Backscattering ; Clutter ; Deep learning ; False alarms ; Lightweight ; lightweight backbone ; Machine learning ; Microbalances ; Neural networks ; position-enhanced attention ; Probability distribution ; Remote sensing ; SAR ship detection ; Scattering ; Synthetic aperture radar ; Target detection ; Wavelet transforms</subject><ispartof>Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (8), p.1908</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</citedby><cites>FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2653023664/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2653023664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Wan, Huiyao</creatorcontrib><creatorcontrib>Xia, Runfan</creatorcontrib><creatorcontrib>Wu, Bocai</creatorcontrib><creatorcontrib>Sun, Long</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><title>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</title><title>Remote sensing (Basel, Switzerland)</title><description>As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Backscattering</subject><subject>Clutter</subject><subject>Deep learning</subject><subject>False alarms</subject><subject>Lightweight</subject><subject>lightweight backbone</subject><subject>Machine learning</subject><subject>Microbalances</subject><subject>Neural networks</subject><subject>position-enhanced attention</subject><subject>Probability distribution</subject><subject>Remote sensing</subject><subject>SAR ship detection</subject><subject>Scattering</subject><subject>Synthetic aperture radar</subject><subject>Target detection</subject><subject>Wavelet transforms</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhoMoWLQXf8GCNyG6n9nsMdRWCwHF6nnZ7M42KW22blLEf29iRZ3DzDC888zwJskVwbeMKXwXO8JxThTOT5IJxZKmnCp6-q8_T6Zdt8FDMDbo-CQpC1Q267r_gDGj59A1fRPadN7WprXgUNHaOsR0EQFQsV2H2PT1DvkQ0ap4Qau62aN76MGOW5fJmTfbDqY_9SJ5W8xfZ49p-fSwnBVlaqkifWqFJ4YRyFRlFZEsd9hlQGgO2Hnuc06ElNhyITiTTlhlia9sZRwFcLSS7CJZHrkumI3ex2Zn4qcOptHfgxDX2sS-sVvQGRWUCSsrZoE7KpSqJAXnCM-cNJ4PrOsjax_D-wG6Xm_CIbbD-5pmgmHKsmxU3RxVNoaui-B_rxKsR_P1n_nsCywZdTE</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Feng, Yun</creator><creator>Chen, Jie</creator><creator>Huang, Zhixiang</creator><creator>Wan, Huiyao</creator><creator>Xia, Runfan</creator><creator>Wu, Bocai</creator><creator>Sun, Long</creator><creator>Xing, Mengdao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20220401</creationdate><title>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</title><author>Feng, Yun ; Chen, Jie ; Huang, Zhixiang ; Wan, Huiyao ; Xia, Runfan ; Wu, Bocai ; Sun, Long ; Xing, Mengdao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Backscattering</topic><topic>Clutter</topic><topic>Deep learning</topic><topic>False alarms</topic><topic>Lightweight</topic><topic>lightweight backbone</topic><topic>Machine learning</topic><topic>Microbalances</topic><topic>Neural networks</topic><topic>position-enhanced attention</topic><topic>Probability distribution</topic><topic>Remote sensing</topic><topic>SAR ship detection</topic><topic>Scattering</topic><topic>Synthetic aperture radar</topic><topic>Target detection</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Huang, Zhixiang</creatorcontrib><creatorcontrib>Wan, Huiyao</creatorcontrib><creatorcontrib>Xia, Runfan</creatorcontrib><creatorcontrib>Wu, Bocai</creatorcontrib><creatorcontrib>Sun, Long</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yun</au><au>Chen, Jie</au><au>Huang, Zhixiang</au><au>Wan, Huiyao</au><au>Xia, Runfan</au><au>Wu, Bocai</au><au>Sun, Long</au><au>Xing, Mengdao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>14</volume><issue>8</issue><spage>1908</spage><pages>1908-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>As an active microwave device, synthetic aperture radar (SAR) uses the backscatter of objects for imaging. SAR image ship targets are characterized by unclear contour information, a complex background and strong scattering. Existing deep learning detection algorithms derived from anchor-based methods mostly rely on expert experience to set a series of hyperparameters, and it is difficult to characterize the unique characteristics of SAR image ship targets, which greatly limits detection accuracy and speed. Therefore, this paper proposes a new lightweight position-enhanced anchor-free SAR ship detection algorithm called LPEDet. First, to resolve unclear SAR target contours and multiscale performance problems, we used YOLOX as the benchmark framework and redesigned the lightweight multiscale backbone, called NLCNet, which balances detection speed and accuracy. Second, for the strong scattering characteristics of the SAR target, we designed a new position-enhanced attention strategy, which suppresses background clutter by adding position information to the channel attention that highlights the target information to more accurately identify and locate the target. The experimental results for two large-scale SAR target detection datasets, SSDD and HRSID, show that our method achieves a higher detection accuracy and a faster detection speed than state-of-the-art SAR target detection methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs14081908</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2022-04, Vol.14 (8), p.1908
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_625235c7b3ce4d2599b72edd146d7af4
source ProQuest - Publicly Available Content Database
subjects Accuracy
Algorithms
Backscattering
Clutter
Deep learning
False alarms
Lightweight
lightweight backbone
Machine learning
Microbalances
Neural networks
position-enhanced attention
Probability distribution
Remote sensing
SAR ship detection
Scattering
Synthetic aperture radar
Target detection
Wavelet transforms
title A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Position-Enhanced%20Anchor-Free%20Algorithm%20for%20SAR%20Ship%20Detection&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Feng,%20Yun&rft.date=2022-04-01&rft.volume=14&rft.issue=8&rft.spage=1908&rft.pages=1908-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs14081908&rft_dat=%3Cproquest_doaj_%3E2653023664%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c5f1a31e69bc91738d0d6e128e0df4f8415770c455437d5c9c1fbcbad2eed2b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2653023664&rft_id=info:pmid/&rfr_iscdi=true