Loading…
Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches
We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leav...
Saved in:
Published in: | New journal of physics 2020-08, Vol.22 (8), p.83039 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063 |
container_end_page | |
container_issue | 8 |
container_start_page | 83039 |
container_title | New journal of physics |
container_volume | 22 |
creator | Klöckner, C Kennes, D M Karrasch, C |
description | We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition. |
doi_str_mv | 10.1088/1367-2630/ab990d |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62ac2cf2cf724e4fa3129e3211478778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62ac2cf2cf724e4fa3129e3211478778</doaj_id><sourcerecordid>2436898620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgdRsFb3LgMuunFsPuYmGXdStBYK7aJdhzO5J725zE2mSaZQf4C_20xHqguFQMLhOc_J4W2a94x-YlTrUyakarkU9BSGvqfbF83Rc-nlX-_XzZuc95Qypjk_an5e7yBjJtGRkiDkEYqPofXhAZKHUEh-zAUPFZjLAuH97Ec_JD8fPhNfMFX-Acl5Qgwnmbg52EVACtpd8PdzVUPYkoQhpgOM_seTn9ylOE8EpilFsDvMb5tXDsaM737fx83tt683Z9_by6vzi7Mvl63tOl1aJ6ToB1BMbbQFZhE1l7jpXC-ZZnSATiqnNpy5QXWScjmAFnZjmdB2GKgUx83F6t1G2Jsp-QOkRxPBm6dCTHcGUvF2RCM5WG5dPYp32DkQjPcoOGOd0krp6vqwuuoSy6LF7OOcQv2-4Z2QuteS00rRlbIp5pzQPU9l1CzJmSUas0Rj1uRqy8na4uP0xxn2k-HcaEO1oKI309ZV8uM_yP-KfwGqSql6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436898620</pqid></control><display><type>article</type><title>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</title><source>Publicly Available Content Database</source><creator>Klöckner, C ; Kennes, D M ; Karrasch, C</creator><creatorcontrib>Klöckner, C ; Kennes, D M ; Karrasch, C</creatorcontrib><description>We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab990d</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric fields ; Fermions ; functional renormalization group ; Invariants ; Iterative methods ; non-equilibrium phase transitions ; Phase transitions ; Physics ; strongly correlated electrons ; Unit cell</subject><ispartof>New journal of physics, 2020-08, Vol.22 (8), p.83039</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</citedby><cites>FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2436898620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Klöckner, C</creatorcontrib><creatorcontrib>Kennes, D M</creatorcontrib><creatorcontrib>Karrasch, C</creatorcontrib><title>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.</description><subject>Electric fields</subject><subject>Fermions</subject><subject>functional renormalization group</subject><subject>Invariants</subject><subject>Iterative methods</subject><subject>non-equilibrium phase transitions</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>strongly correlated electrons</subject><subject>Unit cell</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1rFTEUhgdRsFb3LgMuunFsPuYmGXdStBYK7aJdhzO5J725zE2mSaZQf4C_20xHqguFQMLhOc_J4W2a94x-YlTrUyakarkU9BSGvqfbF83Rc-nlX-_XzZuc95Qypjk_an5e7yBjJtGRkiDkEYqPofXhAZKHUEh-zAUPFZjLAuH97Ec_JD8fPhNfMFX-Acl5Qgwnmbg52EVACtpd8PdzVUPYkoQhpgOM_seTn9ylOE8EpilFsDvMb5tXDsaM737fx83tt683Z9_by6vzi7Mvl63tOl1aJ6ToB1BMbbQFZhE1l7jpXC-ZZnSATiqnNpy5QXWScjmAFnZjmdB2GKgUx83F6t1G2Jsp-QOkRxPBm6dCTHcGUvF2RCM5WG5dPYp32DkQjPcoOGOd0krp6vqwuuoSy6LF7OOcQv2-4Z2QuteS00rRlbIp5pzQPU9l1CzJmSUas0Rj1uRqy8na4uP0xxn2k-HcaEO1oKI309ZV8uM_yP-KfwGqSql6</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Klöckner, C</creator><creator>Kennes, D M</creator><creator>Karrasch, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200801</creationdate><title>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</title><author>Klöckner, C ; Kennes, D M ; Karrasch, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electric fields</topic><topic>Fermions</topic><topic>functional renormalization group</topic><topic>Invariants</topic><topic>Iterative methods</topic><topic>non-equilibrium phase transitions</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>strongly correlated electrons</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klöckner, C</creatorcontrib><creatorcontrib>Kennes, D M</creatorcontrib><creatorcontrib>Karrasch, C</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klöckner, C</au><au>Kennes, D M</au><au>Karrasch, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>83039</spage><pages>83039-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab990d</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2020-08, Vol.22 (8), p.83039 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_62ac2cf2cf724e4fa3129e3211478778 |
source | Publicly Available Content Database |
subjects | Electric fields Fermions functional renormalization group Invariants Iterative methods non-equilibrium phase transitions Phase transitions Physics strongly correlated electrons Unit cell |
title | Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phases%20of%20translation-invariant%20systems%20out%20of%20equilibrium:%20iterative%20Green's%20function%20techniques%20and%20renormalization%20group%20approaches&rft.jtitle=New%20journal%20of%20physics&rft.au=Kl%C3%B6ckner,%20C&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=83039&rft.pages=83039-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab990d&rft_dat=%3Cproquest_doaj_%3E2436898620%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436898620&rft_id=info:pmid/&rfr_iscdi=true |