Loading…

Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches

We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leav...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2020-08, Vol.22 (8), p.83039
Main Authors: Klöckner, C, Kennes, D M, Karrasch, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063
cites cdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063
container_end_page
container_issue 8
container_start_page 83039
container_title New journal of physics
container_volume 22
creator Klöckner, C
Kennes, D M
Karrasch, C
description We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.
doi_str_mv 10.1088/1367-2630/ab990d
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62ac2cf2cf724e4fa3129e3211478778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62ac2cf2cf724e4fa3129e3211478778</doaj_id><sourcerecordid>2436898620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgdRsFb3LgMuunFsPuYmGXdStBYK7aJdhzO5J725zE2mSaZQf4C_20xHqguFQMLhOc_J4W2a94x-YlTrUyakarkU9BSGvqfbF83Rc-nlX-_XzZuc95Qypjk_an5e7yBjJtGRkiDkEYqPofXhAZKHUEh-zAUPFZjLAuH97Ec_JD8fPhNfMFX-Acl5Qgwnmbg52EVACtpd8PdzVUPYkoQhpgOM_seTn9ylOE8EpilFsDvMb5tXDsaM737fx83tt683Z9_by6vzi7Mvl63tOl1aJ6ToB1BMbbQFZhE1l7jpXC-ZZnSATiqnNpy5QXWScjmAFnZjmdB2GKgUx83F6t1G2Jsp-QOkRxPBm6dCTHcGUvF2RCM5WG5dPYp32DkQjPcoOGOd0krp6vqwuuoSy6LF7OOcQv2-4Z2QuteS00rRlbIp5pzQPU9l1CzJmSUas0Rj1uRqy8na4uP0xxn2k-HcaEO1oKI309ZV8uM_yP-KfwGqSql6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436898620</pqid></control><display><type>article</type><title>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</title><source>Publicly Available Content Database</source><creator>Klöckner, C ; Kennes, D M ; Karrasch, C</creator><creatorcontrib>Klöckner, C ; Kennes, D M ; Karrasch, C</creatorcontrib><description>We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ab990d</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Electric fields ; Fermions ; functional renormalization group ; Invariants ; Iterative methods ; non-equilibrium phase transitions ; Phase transitions ; Physics ; strongly correlated electrons ; Unit cell</subject><ispartof>New journal of physics, 2020-08, Vol.22 (8), p.83039</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</citedby><cites>FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2436898620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Klöckner, C</creatorcontrib><creatorcontrib>Kennes, D M</creatorcontrib><creatorcontrib>Karrasch, C</creatorcontrib><title>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.</description><subject>Electric fields</subject><subject>Fermions</subject><subject>functional renormalization group</subject><subject>Invariants</subject><subject>Iterative methods</subject><subject>non-equilibrium phase transitions</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>strongly correlated electrons</subject><subject>Unit cell</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1rFTEUhgdRsFb3LgMuunFsPuYmGXdStBYK7aJdhzO5J725zE2mSaZQf4C_20xHqguFQMLhOc_J4W2a94x-YlTrUyakarkU9BSGvqfbF83Rc-nlX-_XzZuc95Qypjk_an5e7yBjJtGRkiDkEYqPofXhAZKHUEh-zAUPFZjLAuH97Ec_JD8fPhNfMFX-Acl5Qgwnmbg52EVACtpd8PdzVUPYkoQhpgOM_seTn9ylOE8EpilFsDvMb5tXDsaM737fx83tt683Z9_by6vzi7Mvl63tOl1aJ6ToB1BMbbQFZhE1l7jpXC-ZZnSATiqnNpy5QXWScjmAFnZjmdB2GKgUx83F6t1G2Jsp-QOkRxPBm6dCTHcGUvF2RCM5WG5dPYp32DkQjPcoOGOd0krp6vqwuuoSy6LF7OOcQv2-4Z2QuteS00rRlbIp5pzQPU9l1CzJmSUas0Rj1uRqy8na4uP0xxn2k-HcaEO1oKI309ZV8uM_yP-KfwGqSql6</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Klöckner, C</creator><creator>Kennes, D M</creator><creator>Karrasch, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20200801</creationdate><title>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</title><author>Klöckner, C ; Kennes, D M ; Karrasch, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electric fields</topic><topic>Fermions</topic><topic>functional renormalization group</topic><topic>Invariants</topic><topic>Iterative methods</topic><topic>non-equilibrium phase transitions</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>strongly correlated electrons</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klöckner, C</creatorcontrib><creatorcontrib>Kennes, D M</creatorcontrib><creatorcontrib>Karrasch, C</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klöckner, C</au><au>Kennes, D M</au><au>Karrasch, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>22</volume><issue>8</issue><spage>83039</spage><pages>83039-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We introduce a method to evaluate the steady-state non-equilibrium Keldysh-Schwinger Green's functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii-Kosterlitz-Thouless phase transition.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ab990d</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-08, Vol.22 (8), p.83039
issn 1367-2630
1367-2630
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_62ac2cf2cf724e4fa3129e3211478778
source Publicly Available Content Database
subjects Electric fields
Fermions
functional renormalization group
Invariants
Iterative methods
non-equilibrium phase transitions
Phase transitions
Physics
strongly correlated electrons
Unit cell
title Phases of translation-invariant systems out of equilibrium: iterative Green's function techniques and renormalization group approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phases%20of%20translation-invariant%20systems%20out%20of%20equilibrium:%20iterative%20Green's%20function%20techniques%20and%20renormalization%20group%20approaches&rft.jtitle=New%20journal%20of%20physics&rft.au=Kl%C3%B6ckner,%20C&rft.date=2020-08-01&rft.volume=22&rft.issue=8&rft.spage=83039&rft.pages=83039-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ab990d&rft_dat=%3Cproquest_doaj_%3E2436898620%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-f3639ba71758ca1cee826e54f961810ba467f7521fb746026ba83c5c138cbb063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436898620&rft_id=info:pmid/&rfr_iscdi=true