Loading…

Two Types of Martian Magnetotail Current Sheets: MAVEN Observations of Ion Composition

Using measurements from the Mars Atmosphere and Volatile EvolutioN mission, we investigate the densities of H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$), O+ (nO+ ${n}_{{\mathrm{O}}^{+}}$), and O2+ (no2+ ${n}_{{\mathrm{o}}_{2}^{+}}$), respectively, in the Martian magnetotail current sheet. We find that the curr...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2023-01, Vol.50 (2), p.n/a
Main Authors: Li, X. Z., Rong, Z. J., Fraenz, M., Zhang, C., Klinger, L., Shi, Z., Gao, J. W., Dunlop, M. W., Wei, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3
cites cdi_FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3
container_end_page n/a
container_issue 2
container_start_page
container_title Geophysical research letters
container_volume 50
creator Li, X. Z.
Rong, Z. J.
Fraenz, M.
Zhang, C.
Klinger, L.
Shi, Z.
Gao, J. W.
Dunlop, M. W.
Wei, Y.
description Using measurements from the Mars Atmosphere and Volatile EvolutioN mission, we investigate the densities of H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$), O+ (nO+ ${n}_{{\mathrm{O}}^{+}}$), and O2+ (no2+ ${n}_{{\mathrm{o}}_{2}^{+}}$), respectively, in the Martian magnetotail current sheet. We find that the current sheet when it is closer to the terminator than 0.75 Mars radii is mostly dominated by heavy ions ((nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)>2 nH+ ${n}_{{\mathrm{H}}^{+}}$), regardless of the variation of the upstream solar wind, but that it is sometimes dominated by H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$ >2(nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)) at downstream distances exceeding 0.75 Mars radii. The occurrence rate of the dominant H+ weakly increases (and that of the heavy ions decreases) with solar wind density and dynamic pressure. Our results suggest that solar wind protons could enter the Martian tail and may become the dominant ion species in the current sheet, particularly when the solar wind density or dynamic pressure is high. Plain Language Summary The current sheet of the Martian magnetotail is a major channel for the escape of planetary ions. The ion composition in the current sheet is essential to our understanding of this escape, as well as the magnetotail plasma dynamics. Our current knowledge, however, is poor. Based on the measurements of the ion density of different species in the current sheet from the Mars Atmosphere and Volatile EvolutioN spacecraft, we report that the current sheets we have surveyed are dominated by either the heavy ions from the planet or H+ (mostly) from the solar wind. We find that the downstream distance and the variation of the upstream solar wind are the two key factors that account for which ion species dominates in the tail current sheet. Key Points Current sheets are mostly dominated by heavy ions but are sometimes dominated by H+ at the downstream distance exceeding 0.75 Mars radii The occurrence rate of current sheets with dominant H+ (heavy ions) weakly increases (decreases) with solar wind density and dynamic pressure Our results suggest that the dominant H+ in the current sheet could originate from solar wind
doi_str_mv 10.1029/2022GL102630
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62b8606e9a104145b2c266c7d95d967f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62b8606e9a104145b2c266c7d95d967f</doaj_id><sourcerecordid>2772535263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWD9u_oAFr1aTSTZpvEnRWqgKWnoNSXa2bqmbmmyV_ntTK-LJ0wzDM-87H4ScMXrJKOgroACjSU4lp3ukx7QQ_QGlap_0KNU5ByUPyVFKC0opp5z1yGz6GYrpZoWpCHXxYGPX2DbHeYtd6GyzLIbrGLHtipdXxC5dFw83s9vH4skljB-2a0L73TkObTEMb6uQmm3thBzUdpnw9Ccek-nd7XR43588jcbDm0nfC0ZFX3jGlMZaCRi4SiNwViouQTnmrPeSyroWNYIWFCwyV6KzJYDDiltben5MxjvZKtiFWcXmzcaNCbYx34UQ52a7kV-ikeAGWQ-1zcZMlA48SOlVpctKS1VnrfOd1iqG9zWmzizCOrZ5egNKQcnLfNZMXewoH0NKEetfV0bN9gnm7xMyDjv8s1ni5l_WjJ4nMrsI_gVLcYYo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772535263</pqid></control><display><type>article</type><title>Two Types of Martian Magnetotail Current Sheets: MAVEN Observations of Ion Composition</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Wiley-Blackwell AGU Digital Archive</source><creator>Li, X. Z. ; Rong, Z. J. ; Fraenz, M. ; Zhang, C. ; Klinger, L. ; Shi, Z. ; Gao, J. W. ; Dunlop, M. W. ; Wei, Y.</creator><creatorcontrib>Li, X. Z. ; Rong, Z. J. ; Fraenz, M. ; Zhang, C. ; Klinger, L. ; Shi, Z. ; Gao, J. W. ; Dunlop, M. W. ; Wei, Y.</creatorcontrib><description>Using measurements from the Mars Atmosphere and Volatile EvolutioN mission, we investigate the densities of H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$), O+ (nO+ ${n}_{{\mathrm{O}}^{+}}$), and O2+ (no2+ ${n}_{{\mathrm{o}}_{2}^{+}}$), respectively, in the Martian magnetotail current sheet. We find that the current sheet when it is closer to the terminator than 0.75 Mars radii is mostly dominated by heavy ions ((nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)&gt;2 nH+ ${n}_{{\mathrm{H}}^{+}}$), regardless of the variation of the upstream solar wind, but that it is sometimes dominated by H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$ &gt;2(nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)) at downstream distances exceeding 0.75 Mars radii. The occurrence rate of the dominant H+ weakly increases (and that of the heavy ions decreases) with solar wind density and dynamic pressure. Our results suggest that solar wind protons could enter the Martian tail and may become the dominant ion species in the current sheet, particularly when the solar wind density or dynamic pressure is high. Plain Language Summary The current sheet of the Martian magnetotail is a major channel for the escape of planetary ions. The ion composition in the current sheet is essential to our understanding of this escape, as well as the magnetotail plasma dynamics. Our current knowledge, however, is poor. Based on the measurements of the ion density of different species in the current sheet from the Mars Atmosphere and Volatile EvolutioN spacecraft, we report that the current sheets we have surveyed are dominated by either the heavy ions from the planet or H+ (mostly) from the solar wind. We find that the downstream distance and the variation of the upstream solar wind are the two key factors that account for which ion species dominates in the tail current sheet. Key Points Current sheets are mostly dominated by heavy ions but are sometimes dominated by H+ at the downstream distance exceeding 0.75 Mars radii The occurrence rate of current sheets with dominant H+ (heavy ions) weakly increases (decreases) with solar wind density and dynamic pressure Our results suggest that the dominant H+ in the current sheet could originate from solar wind</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL102630</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Charged particles ; Composition ; current sheet ; Current sheets ; Density ; Dynamic pressure ; Evolution ; Heavy ions ; Hydrogen ; Ion composition ; Ion density ; Ion density (concentration) ; ion escape ; ion species ; Ions ; Magnetotail plasma ; Magnetotails ; Mars ; Mars atmosphere ; Mars missions ; Martian magnetotail current sheet ; Nitrogen dioxide ; Planetary magnetotails ; Plasma dynamics ; Protons ; Solar wind ; Solar wind density ; Solar wind protons ; Spacecraft ; Upstream</subject><ispartof>Geophysical research letters, 2023-01, Vol.50 (2), p.n/a</ispartof><rights>2023. The Authors.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3</citedby><cites>FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3</cites><orcidid>0000-0002-8195-5137 ; 0000-0003-4521-2931 ; 0000-0001-7183-0229 ; 0000-0001-9154-596X ; 0000-0001-9505-0622 ; 0000-0003-4609-4519 ; 0000-0003-4432-1132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL102630$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL102630$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11514,11562,27924,27925,46052,46468,46476,46892</link.rule.ids></links><search><creatorcontrib>Li, X. Z.</creatorcontrib><creatorcontrib>Rong, Z. J.</creatorcontrib><creatorcontrib>Fraenz, M.</creatorcontrib><creatorcontrib>Zhang, C.</creatorcontrib><creatorcontrib>Klinger, L.</creatorcontrib><creatorcontrib>Shi, Z.</creatorcontrib><creatorcontrib>Gao, J. W.</creatorcontrib><creatorcontrib>Dunlop, M. W.</creatorcontrib><creatorcontrib>Wei, Y.</creatorcontrib><title>Two Types of Martian Magnetotail Current Sheets: MAVEN Observations of Ion Composition</title><title>Geophysical research letters</title><description>Using measurements from the Mars Atmosphere and Volatile EvolutioN mission, we investigate the densities of H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$), O+ (nO+ ${n}_{{\mathrm{O}}^{+}}$), and O2+ (no2+ ${n}_{{\mathrm{o}}_{2}^{+}}$), respectively, in the Martian magnetotail current sheet. We find that the current sheet when it is closer to the terminator than 0.75 Mars radii is mostly dominated by heavy ions ((nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)&gt;2 nH+ ${n}_{{\mathrm{H}}^{+}}$), regardless of the variation of the upstream solar wind, but that it is sometimes dominated by H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$ &gt;2(nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)) at downstream distances exceeding 0.75 Mars radii. The occurrence rate of the dominant H+ weakly increases (and that of the heavy ions decreases) with solar wind density and dynamic pressure. Our results suggest that solar wind protons could enter the Martian tail and may become the dominant ion species in the current sheet, particularly when the solar wind density or dynamic pressure is high. Plain Language Summary The current sheet of the Martian magnetotail is a major channel for the escape of planetary ions. The ion composition in the current sheet is essential to our understanding of this escape, as well as the magnetotail plasma dynamics. Our current knowledge, however, is poor. Based on the measurements of the ion density of different species in the current sheet from the Mars Atmosphere and Volatile EvolutioN spacecraft, we report that the current sheets we have surveyed are dominated by either the heavy ions from the planet or H+ (mostly) from the solar wind. We find that the downstream distance and the variation of the upstream solar wind are the two key factors that account for which ion species dominates in the tail current sheet. Key Points Current sheets are mostly dominated by heavy ions but are sometimes dominated by H+ at the downstream distance exceeding 0.75 Mars radii The occurrence rate of current sheets with dominant H+ (heavy ions) weakly increases (decreases) with solar wind density and dynamic pressure Our results suggest that the dominant H+ in the current sheet could originate from solar wind</description><subject>Charged particles</subject><subject>Composition</subject><subject>current sheet</subject><subject>Current sheets</subject><subject>Density</subject><subject>Dynamic pressure</subject><subject>Evolution</subject><subject>Heavy ions</subject><subject>Hydrogen</subject><subject>Ion composition</subject><subject>Ion density</subject><subject>Ion density (concentration)</subject><subject>ion escape</subject><subject>ion species</subject><subject>Ions</subject><subject>Magnetotail plasma</subject><subject>Magnetotails</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars missions</subject><subject>Martian magnetotail current sheet</subject><subject>Nitrogen dioxide</subject><subject>Planetary magnetotails</subject><subject>Plasma dynamics</subject><subject>Protons</subject><subject>Solar wind</subject><subject>Solar wind density</subject><subject>Solar wind protons</subject><subject>Spacecraft</subject><subject>Upstream</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LAzEQhoMoWD9u_oAFr1aTSTZpvEnRWqgKWnoNSXa2bqmbmmyV_ntTK-LJ0wzDM-87H4ScMXrJKOgroACjSU4lp3ukx7QQ_QGlap_0KNU5ByUPyVFKC0opp5z1yGz6GYrpZoWpCHXxYGPX2DbHeYtd6GyzLIbrGLHtipdXxC5dFw83s9vH4skljB-2a0L73TkObTEMb6uQmm3thBzUdpnw9Ccek-nd7XR43588jcbDm0nfC0ZFX3jGlMZaCRi4SiNwViouQTnmrPeSyroWNYIWFCwyV6KzJYDDiltben5MxjvZKtiFWcXmzcaNCbYx34UQ52a7kV-ikeAGWQ-1zcZMlA48SOlVpctKS1VnrfOd1iqG9zWmzizCOrZ5egNKQcnLfNZMXewoH0NKEetfV0bN9gnm7xMyDjv8s1ni5l_WjJ4nMrsI_gVLcYYo</recordid><startdate>20230128</startdate><enddate>20230128</enddate><creator>Li, X. Z.</creator><creator>Rong, Z. J.</creator><creator>Fraenz, M.</creator><creator>Zhang, C.</creator><creator>Klinger, L.</creator><creator>Shi, Z.</creator><creator>Gao, J. W.</creator><creator>Dunlop, M. W.</creator><creator>Wei, Y.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8195-5137</orcidid><orcidid>https://orcid.org/0000-0003-4521-2931</orcidid><orcidid>https://orcid.org/0000-0001-7183-0229</orcidid><orcidid>https://orcid.org/0000-0001-9154-596X</orcidid><orcidid>https://orcid.org/0000-0001-9505-0622</orcidid><orcidid>https://orcid.org/0000-0003-4609-4519</orcidid><orcidid>https://orcid.org/0000-0003-4432-1132</orcidid></search><sort><creationdate>20230128</creationdate><title>Two Types of Martian Magnetotail Current Sheets: MAVEN Observations of Ion Composition</title><author>Li, X. Z. ; Rong, Z. J. ; Fraenz, M. ; Zhang, C. ; Klinger, L. ; Shi, Z. ; Gao, J. W. ; Dunlop, M. W. ; Wei, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charged particles</topic><topic>Composition</topic><topic>current sheet</topic><topic>Current sheets</topic><topic>Density</topic><topic>Dynamic pressure</topic><topic>Evolution</topic><topic>Heavy ions</topic><topic>Hydrogen</topic><topic>Ion composition</topic><topic>Ion density</topic><topic>Ion density (concentration)</topic><topic>ion escape</topic><topic>ion species</topic><topic>Ions</topic><topic>Magnetotail plasma</topic><topic>Magnetotails</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars missions</topic><topic>Martian magnetotail current sheet</topic><topic>Nitrogen dioxide</topic><topic>Planetary magnetotails</topic><topic>Plasma dynamics</topic><topic>Protons</topic><topic>Solar wind</topic><topic>Solar wind density</topic><topic>Solar wind protons</topic><topic>Spacecraft</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, X. Z.</creatorcontrib><creatorcontrib>Rong, Z. J.</creatorcontrib><creatorcontrib>Fraenz, M.</creatorcontrib><creatorcontrib>Zhang, C.</creatorcontrib><creatorcontrib>Klinger, L.</creatorcontrib><creatorcontrib>Shi, Z.</creatorcontrib><creatorcontrib>Gao, J. W.</creatorcontrib><creatorcontrib>Dunlop, M. W.</creatorcontrib><creatorcontrib>Wei, Y.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, X. Z.</au><au>Rong, Z. J.</au><au>Fraenz, M.</au><au>Zhang, C.</au><au>Klinger, L.</au><au>Shi, Z.</au><au>Gao, J. W.</au><au>Dunlop, M. W.</au><au>Wei, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Types of Martian Magnetotail Current Sheets: MAVEN Observations of Ion Composition</atitle><jtitle>Geophysical research letters</jtitle><date>2023-01-28</date><risdate>2023</risdate><volume>50</volume><issue>2</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Using measurements from the Mars Atmosphere and Volatile EvolutioN mission, we investigate the densities of H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$), O+ (nO+ ${n}_{{\mathrm{O}}^{+}}$), and O2+ (no2+ ${n}_{{\mathrm{o}}_{2}^{+}}$), respectively, in the Martian magnetotail current sheet. We find that the current sheet when it is closer to the terminator than 0.75 Mars radii is mostly dominated by heavy ions ((nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)&gt;2 nH+ ${n}_{{\mathrm{H}}^{+}}$), regardless of the variation of the upstream solar wind, but that it is sometimes dominated by H+ (nH+ ${n}_{{\mathrm{H}}^{+}}$ &gt;2(nO++no2+ ${n}_{{\mathrm{O}}^{+}}+{n}_{{\mathrm{o}}_{2}^{+}}$)) at downstream distances exceeding 0.75 Mars radii. The occurrence rate of the dominant H+ weakly increases (and that of the heavy ions decreases) with solar wind density and dynamic pressure. Our results suggest that solar wind protons could enter the Martian tail and may become the dominant ion species in the current sheet, particularly when the solar wind density or dynamic pressure is high. Plain Language Summary The current sheet of the Martian magnetotail is a major channel for the escape of planetary ions. The ion composition in the current sheet is essential to our understanding of this escape, as well as the magnetotail plasma dynamics. Our current knowledge, however, is poor. Based on the measurements of the ion density of different species in the current sheet from the Mars Atmosphere and Volatile EvolutioN spacecraft, we report that the current sheets we have surveyed are dominated by either the heavy ions from the planet or H+ (mostly) from the solar wind. We find that the downstream distance and the variation of the upstream solar wind are the two key factors that account for which ion species dominates in the tail current sheet. Key Points Current sheets are mostly dominated by heavy ions but are sometimes dominated by H+ at the downstream distance exceeding 0.75 Mars radii The occurrence rate of current sheets with dominant H+ (heavy ions) weakly increases (decreases) with solar wind density and dynamic pressure Our results suggest that the dominant H+ in the current sheet could originate from solar wind</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL102630</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8195-5137</orcidid><orcidid>https://orcid.org/0000-0003-4521-2931</orcidid><orcidid>https://orcid.org/0000-0001-7183-0229</orcidid><orcidid>https://orcid.org/0000-0001-9154-596X</orcidid><orcidid>https://orcid.org/0000-0001-9505-0622</orcidid><orcidid>https://orcid.org/0000-0003-4609-4519</orcidid><orcidid>https://orcid.org/0000-0003-4432-1132</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2023-01, Vol.50 (2), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_62b8606e9a104145b2c266c7d95d967f
source Open Access: Wiley-Blackwell Open Access Journals; Wiley-Blackwell AGU Digital Archive
subjects Charged particles
Composition
current sheet
Current sheets
Density
Dynamic pressure
Evolution
Heavy ions
Hydrogen
Ion composition
Ion density
Ion density (concentration)
ion escape
ion species
Ions
Magnetotail plasma
Magnetotails
Mars
Mars atmosphere
Mars missions
Martian magnetotail current sheet
Nitrogen dioxide
Planetary magnetotails
Plasma dynamics
Protons
Solar wind
Solar wind density
Solar wind protons
Spacecraft
Upstream
title Two Types of Martian Magnetotail Current Sheets: MAVEN Observations of Ion Composition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Types%20of%20Martian%20Magnetotail%20Current%20Sheets:%20MAVEN%20Observations%20of%20Ion%20Composition&rft.jtitle=Geophysical%20research%20letters&rft.au=Li,%20X.%20Z.&rft.date=2023-01-28&rft.volume=50&rft.issue=2&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL102630&rft_dat=%3Cproquest_doaj_%3E2772535263%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4104-4c1179ef7428bd9e231573627b1bacc606ff4fe29402ae1b5eba522bed3aa5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2772535263&rft_id=info:pmid/&rfr_iscdi=true