Loading…

Investigation of the Power Quality Concerns of Input Current in Single-Phase Frequency Step-Down Converter

Single-phase direct frequency converters are gaining attraction at the research and academic level as they are rapidly getting space over conventional multistage converters. The converters developed with a rectification and inversion process using a DC-link level are examples of multistage converter...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-04, Vol.12 (7), p.3663
Main Authors: Ashraf, Naveed, Abbas, Ghulam, Ullah, Nasim, Al-Ahmadi, Ahmad Aziz, Raza, Ali, Farooq, Umar, Jamil, Mohsin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3
cites cdi_FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3
container_end_page
container_issue 7
container_start_page 3663
container_title Applied sciences
container_volume 12
creator Ashraf, Naveed
Abbas, Ghulam
Ullah, Nasim
Al-Ahmadi, Ahmad Aziz
Raza, Ali
Farooq, Umar
Jamil, Mohsin
description Single-phase direct frequency converters are gaining attraction at the research and academic level as they are rapidly getting space over conventional multistage converters. The converters developed with a rectification and inversion process using a DC-link level are examples of multistage converters with some serious concerns such as an increase in the overall weight, losses, and cost. They also suffer from the low-reliability issue due to the issues involved with DC-link capacitors and problems linked with electromagnetic interference (EMI) caused by high-frequency pulse width modulation (PWM) switching. These problems are addressed with line frequency switching cycloconverters. In these converters, the power quality of the output voltage is improved by governing the amplitude of some selected output pulses or half-cycles. For this purpose, a low-frequency multiple tapping transformer may be used to obtain various voltage levels. However, its use is the main source of increased overall weight, losses, cost, and volume. In transformer eliminated topologies, high-frequency PWM control can be employed to control the magnitude of some selected half cycles of the output voltage. However, this approach may arise some problems related to EMI. In both control techniques, the attention is focused on the power quality of the output voltage only. The concern for the input current is ignored and not yet analyzed. This is one of the critical power quality concerns and requires further investigation. The magnitude control of the output half-cycles causes the variation in the amplitude of some half cycles of the input currents. As a result, all half cycles of the input current become non-symmetric. It generates harmonics that are always of low frequency and cannot be easily filtered out. It results in a high value of the harmonic factor (HF) of the input current. The improvement in the power quality of the output voltages severally degrades the power quality of the input currents. In this research, this problem is investigated with mathematically computed harmonic coefficients with a pulse selective approach. Also, a simple single-phase cycloconverter is introduced to improve the power quality index of the input current. The overall analysis is supported by the results obtained from a Simulink-based environment and a practically constructed prototype.
doi_str_mv 10.3390/app12073663
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62c5882b62b5441faffcc94e567d4308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62c5882b62b5441faffcc94e567d4308</doaj_id><sourcerecordid>2649006855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITIMTfyASR1TIV9PmiMZXpUmAgHOUps7oNJKSpJv27-kYQvPFT_bzs62XZRcEXzMm8Y3ue0JxyYRgR9lkRCJnnJTHB_g0O49xiceQhFUET7Jl7dYQU7fQqfMOeYvSJ6AXv4GAXge96tIWzbwzEFzcdWvXDwnNhhDAJdQ59Na5xQryl08dAT0E-B7AmS16S9Dnd37jdtNrCAnCWXZi9SrC-V-eZh8P9--zp3z-_FjPbue5YYKnXNLGlJaTRrCmxACcQCWk5qakRhiQZUsk19ZAxRrdViANaXHbUiJsIQxt2TSr97qt10vVh-5Lh63yulO_BR8WSofUmRUoQU1RVbQRtCk4J1Zba4zkUIiy5QxXo9blXqsPfvwsJrX0Q3Dj-YoKLjEWVVGMrKs9ywQfYwD7v5VgtfNGHXjDfgBRL4Ib</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649006855</pqid></control><display><type>article</type><title>Investigation of the Power Quality Concerns of Input Current in Single-Phase Frequency Step-Down Converter</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ashraf, Naveed ; Abbas, Ghulam ; Ullah, Nasim ; Al-Ahmadi, Ahmad Aziz ; Raza, Ali ; Farooq, Umar ; Jamil, Mohsin</creator><creatorcontrib>Ashraf, Naveed ; Abbas, Ghulam ; Ullah, Nasim ; Al-Ahmadi, Ahmad Aziz ; Raza, Ali ; Farooq, Umar ; Jamil, Mohsin</creatorcontrib><description>Single-phase direct frequency converters are gaining attraction at the research and academic level as they are rapidly getting space over conventional multistage converters. The converters developed with a rectification and inversion process using a DC-link level are examples of multistage converters with some serious concerns such as an increase in the overall weight, losses, and cost. They also suffer from the low-reliability issue due to the issues involved with DC-link capacitors and problems linked with electromagnetic interference (EMI) caused by high-frequency pulse width modulation (PWM) switching. These problems are addressed with line frequency switching cycloconverters. In these converters, the power quality of the output voltage is improved by governing the amplitude of some selected output pulses or half-cycles. For this purpose, a low-frequency multiple tapping transformer may be used to obtain various voltage levels. However, its use is the main source of increased overall weight, losses, cost, and volume. In transformer eliminated topologies, high-frequency PWM control can be employed to control the magnitude of some selected half cycles of the output voltage. However, this approach may arise some problems related to EMI. In both control techniques, the attention is focused on the power quality of the output voltage only. The concern for the input current is ignored and not yet analyzed. This is one of the critical power quality concerns and requires further investigation. The magnitude control of the output half-cycles causes the variation in the amplitude of some half cycles of the input currents. As a result, all half cycles of the input current become non-symmetric. It generates harmonics that are always of low frequency and cannot be easily filtered out. It results in a high value of the harmonic factor (HF) of the input current. The improvement in the power quality of the output voltages severally degrades the power quality of the input currents. In this research, this problem is investigated with mathematically computed harmonic coefficients with a pulse selective approach. Also, a simple single-phase cycloconverter is introduced to improve the power quality index of the input current. The overall analysis is supported by the results obtained from a Simulink-based environment and a practically constructed prototype.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app12073663</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Buck converters ; Circuits ; cycloconverter ; Cycloconverters ; Electric potential ; Electromagnetic interference ; Frequency converters ; harmonic factor ; Harmonics ; multistage converters ; power quality ; Pulse duration modulation ; Topology ; Transistors ; Voltage</subject><ispartof>Applied sciences, 2022-04, Vol.12 (7), p.3663</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3</citedby><cites>FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3</cites><orcidid>0000-0002-2909-654X ; 0000-0002-1996-7671 ; 0000-0003-0947-3616 ; 0000-0002-8835-2451 ; 0000-0001-7208-6374 ; 0000-0003-0828-2842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2649006855/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2649006855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Ashraf, Naveed</creatorcontrib><creatorcontrib>Abbas, Ghulam</creatorcontrib><creatorcontrib>Ullah, Nasim</creatorcontrib><creatorcontrib>Al-Ahmadi, Ahmad Aziz</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Farooq, Umar</creatorcontrib><creatorcontrib>Jamil, Mohsin</creatorcontrib><title>Investigation of the Power Quality Concerns of Input Current in Single-Phase Frequency Step-Down Converter</title><title>Applied sciences</title><description>Single-phase direct frequency converters are gaining attraction at the research and academic level as they are rapidly getting space over conventional multistage converters. The converters developed with a rectification and inversion process using a DC-link level are examples of multistage converters with some serious concerns such as an increase in the overall weight, losses, and cost. They also suffer from the low-reliability issue due to the issues involved with DC-link capacitors and problems linked with electromagnetic interference (EMI) caused by high-frequency pulse width modulation (PWM) switching. These problems are addressed with line frequency switching cycloconverters. In these converters, the power quality of the output voltage is improved by governing the amplitude of some selected output pulses or half-cycles. For this purpose, a low-frequency multiple tapping transformer may be used to obtain various voltage levels. However, its use is the main source of increased overall weight, losses, cost, and volume. In transformer eliminated topologies, high-frequency PWM control can be employed to control the magnitude of some selected half cycles of the output voltage. However, this approach may arise some problems related to EMI. In both control techniques, the attention is focused on the power quality of the output voltage only. The concern for the input current is ignored and not yet analyzed. This is one of the critical power quality concerns and requires further investigation. The magnitude control of the output half-cycles causes the variation in the amplitude of some half cycles of the input currents. As a result, all half cycles of the input current become non-symmetric. It generates harmonics that are always of low frequency and cannot be easily filtered out. It results in a high value of the harmonic factor (HF) of the input current. The improvement in the power quality of the output voltages severally degrades the power quality of the input currents. In this research, this problem is investigated with mathematically computed harmonic coefficients with a pulse selective approach. Also, a simple single-phase cycloconverter is introduced to improve the power quality index of the input current. The overall analysis is supported by the results obtained from a Simulink-based environment and a practically constructed prototype.</description><subject>Buck converters</subject><subject>Circuits</subject><subject>cycloconverter</subject><subject>Cycloconverters</subject><subject>Electric potential</subject><subject>Electromagnetic interference</subject><subject>Frequency converters</subject><subject>harmonic factor</subject><subject>Harmonics</subject><subject>multistage converters</subject><subject>power quality</subject><subject>Pulse duration modulation</subject><subject>Topology</subject><subject>Transistors</subject><subject>Voltage</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITIMTfyASR1TIV9PmiMZXpUmAgHOUps7oNJKSpJv27-kYQvPFT_bzs62XZRcEXzMm8Y3ue0JxyYRgR9lkRCJnnJTHB_g0O49xiceQhFUET7Jl7dYQU7fQqfMOeYvSJ6AXv4GAXge96tIWzbwzEFzcdWvXDwnNhhDAJdQ59Na5xQryl08dAT0E-B7AmS16S9Dnd37jdtNrCAnCWXZi9SrC-V-eZh8P9--zp3z-_FjPbue5YYKnXNLGlJaTRrCmxACcQCWk5qakRhiQZUsk19ZAxRrdViANaXHbUiJsIQxt2TSr97qt10vVh-5Lh63yulO_BR8WSofUmRUoQU1RVbQRtCk4J1Zba4zkUIiy5QxXo9blXqsPfvwsJrX0Q3Dj-YoKLjEWVVGMrKs9ywQfYwD7v5VgtfNGHXjDfgBRL4Ib</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ashraf, Naveed</creator><creator>Abbas, Ghulam</creator><creator>Ullah, Nasim</creator><creator>Al-Ahmadi, Ahmad Aziz</creator><creator>Raza, Ali</creator><creator>Farooq, Umar</creator><creator>Jamil, Mohsin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2909-654X</orcidid><orcidid>https://orcid.org/0000-0002-1996-7671</orcidid><orcidid>https://orcid.org/0000-0003-0947-3616</orcidid><orcidid>https://orcid.org/0000-0002-8835-2451</orcidid><orcidid>https://orcid.org/0000-0001-7208-6374</orcidid><orcidid>https://orcid.org/0000-0003-0828-2842</orcidid></search><sort><creationdate>20220401</creationdate><title>Investigation of the Power Quality Concerns of Input Current in Single-Phase Frequency Step-Down Converter</title><author>Ashraf, Naveed ; Abbas, Ghulam ; Ullah, Nasim ; Al-Ahmadi, Ahmad Aziz ; Raza, Ali ; Farooq, Umar ; Jamil, Mohsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Buck converters</topic><topic>Circuits</topic><topic>cycloconverter</topic><topic>Cycloconverters</topic><topic>Electric potential</topic><topic>Electromagnetic interference</topic><topic>Frequency converters</topic><topic>harmonic factor</topic><topic>Harmonics</topic><topic>multistage converters</topic><topic>power quality</topic><topic>Pulse duration modulation</topic><topic>Topology</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashraf, Naveed</creatorcontrib><creatorcontrib>Abbas, Ghulam</creatorcontrib><creatorcontrib>Ullah, Nasim</creatorcontrib><creatorcontrib>Al-Ahmadi, Ahmad Aziz</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Farooq, Umar</creatorcontrib><creatorcontrib>Jamil, Mohsin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashraf, Naveed</au><au>Abbas, Ghulam</au><au>Ullah, Nasim</au><au>Al-Ahmadi, Ahmad Aziz</au><au>Raza, Ali</au><au>Farooq, Umar</au><au>Jamil, Mohsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Power Quality Concerns of Input Current in Single-Phase Frequency Step-Down Converter</atitle><jtitle>Applied sciences</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>3663</spage><pages>3663-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Single-phase direct frequency converters are gaining attraction at the research and academic level as they are rapidly getting space over conventional multistage converters. The converters developed with a rectification and inversion process using a DC-link level are examples of multistage converters with some serious concerns such as an increase in the overall weight, losses, and cost. They also suffer from the low-reliability issue due to the issues involved with DC-link capacitors and problems linked with electromagnetic interference (EMI) caused by high-frequency pulse width modulation (PWM) switching. These problems are addressed with line frequency switching cycloconverters. In these converters, the power quality of the output voltage is improved by governing the amplitude of some selected output pulses or half-cycles. For this purpose, a low-frequency multiple tapping transformer may be used to obtain various voltage levels. However, its use is the main source of increased overall weight, losses, cost, and volume. In transformer eliminated topologies, high-frequency PWM control can be employed to control the magnitude of some selected half cycles of the output voltage. However, this approach may arise some problems related to EMI. In both control techniques, the attention is focused on the power quality of the output voltage only. The concern for the input current is ignored and not yet analyzed. This is one of the critical power quality concerns and requires further investigation. The magnitude control of the output half-cycles causes the variation in the amplitude of some half cycles of the input currents. As a result, all half cycles of the input current become non-symmetric. It generates harmonics that are always of low frequency and cannot be easily filtered out. It results in a high value of the harmonic factor (HF) of the input current. The improvement in the power quality of the output voltages severally degrades the power quality of the input currents. In this research, this problem is investigated with mathematically computed harmonic coefficients with a pulse selective approach. Also, a simple single-phase cycloconverter is introduced to improve the power quality index of the input current. The overall analysis is supported by the results obtained from a Simulink-based environment and a practically constructed prototype.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app12073663</doi><orcidid>https://orcid.org/0000-0002-2909-654X</orcidid><orcidid>https://orcid.org/0000-0002-1996-7671</orcidid><orcidid>https://orcid.org/0000-0003-0947-3616</orcidid><orcidid>https://orcid.org/0000-0002-8835-2451</orcidid><orcidid>https://orcid.org/0000-0001-7208-6374</orcidid><orcidid>https://orcid.org/0000-0003-0828-2842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2022-04, Vol.12 (7), p.3663
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_62c5882b62b5441faffcc94e567d4308
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Buck converters
Circuits
cycloconverter
Cycloconverters
Electric potential
Electromagnetic interference
Frequency converters
harmonic factor
Harmonics
multistage converters
power quality
Pulse duration modulation
Topology
Transistors
Voltage
title Investigation of the Power Quality Concerns of Input Current in Single-Phase Frequency Step-Down Converter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Power%20Quality%20Concerns%20of%20Input%20Current%20in%20Single-Phase%20Frequency%20Step-Down%20Converter&rft.jtitle=Applied%20sciences&rft.au=Ashraf,%20Naveed&rft.date=2022-04-01&rft.volume=12&rft.issue=7&rft.spage=3663&rft.pages=3663-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app12073663&rft_dat=%3Cproquest_doaj_%3E2649006855%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-92bc7f41b63b70ee41e869a4c72c6ce97d194afce83bad8e9c1d0dd216f56c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2649006855&rft_id=info:pmid/&rfr_iscdi=true