Loading…

Experimental analysis and modelling of the strain-rate sensitivity of sheet niobium

The niobium is currently used for the construction of the superconducting radio frequency (RF) Crab Cavity for the particle accelerator LHC at CERN in Geneva. An alternative technique to traditional forming methods is the electrohydraulic forming (EHF), in which ultrahigh-speed deformation of blank...

Full description

Saved in:
Bibliographic Details
Main Authors: Peroni, Lorenzo, Scapin, Martina
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The niobium is currently used for the construction of the superconducting radio frequency (RF) Crab Cavity for the particle accelerator LHC at CERN in Geneva. An alternative technique to traditional forming methods is the electrohydraulic forming (EHF), in which ultrahigh-speed deformation of blank sheets is performed by using shockwaves electrically induced in water. A big effort is made for the analysis of the forming processes by FEM simulations, which require the definition of an appropriate flow stress material model. With this aim, in the present work, a testing campaign was performed in tension on sheet specimens with a rectangular cross-section at different strain-rates, up to 103 s-1. The obtained results showed the material is strongly sensitive to strain-rate, as expected for a pure BCC metal. The data, were processed via a reverse engineering procedure, based on finite element simulations of the experimental tests. This methodology allowed the identification of a tabular flow stress model (MAT_224 implemented in LSDYNA) for the prediction of the material behaviour as a function of the plastic strain, strain-rate and temperature.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201818301014