Loading…

Application of a Polyacrylate Latex to a Lithium Iron Phosphate Cathode as a Binder Material

In the manufacturing process of lithium-ion batteries, the current organic solvent-based processes will inevitably be replaced with eco-friendly water-based processes. For this purpose, the current organic-soluble binder should be replaced with a water-soluble or water-dispersed binder. In this stud...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-04, Vol.14 (7), p.1902
Main Authors: Tian, Mi, Qi, Yanchunxiao, Oh, Eun-Suok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the manufacturing process of lithium-ion batteries, the current organic solvent-based processes will inevitably be replaced with eco-friendly water-based processes. For this purpose, the current organic-soluble binder should be replaced with a water-soluble or water-dispersed binder. In this study, a new polyacrylate latex dispersed in water was successfully applied as a binder of lithium-ion battery cathodes for the first time. One of the biggest advantages of the polyacrylate binder is that it is electrochemically stable at the working voltage of typical cathodes, unlike a conventional water-dispersed styrene-butadiene binder. This implies that the water-dispersed polyacrylate has no limitations for the usage of a cathodic binder. The performance of the polyacrylate binder for lithium iron phosphate cathodes was compared with those of a conventional organic-based polyvinylidene fluoride binder as well as a water-dispersed styrene-butadiene binder. The polyacrylate binder exhibited an electrochemical performance that was comparable to that of an existing styrene-butadiene binder and much better than that of the polyvinylidene fluoride binder. This superior performance of the polyacrylate binder is attributed to the point-to-point bonding mechanism of an emulsified binder, which leads to a strong adhesion strength as well as the low electrical and charge transfer resistances of the cathodes.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14071902