Loading…

Biomechanical Effects of Different Sitting Postures and Physiologic Movements on the Lumbar Spine: A Finite Element Study

This study used the finite element method(FEM) to investigate how pressure on the lumbar spine changes during dynamic movements in different postures: standing, erect sitting on a chair, slumped sitting on a chair, and sitting on the floor. Three load modes (flexion, lateral bending, and axial rotat...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2023-09, Vol.10 (9), p.1051
Main Authors: Cho, Mingoo, Han, Jun-Sang, Kang, Sungwook, Ahn, Chang-Hwan, Kim, Dong-Hee, Kim, Chul-Hyun, Kim, Kyoung-Tae, Kim, Ae-Ryoung, Hwang, Jong-Moon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study used the finite element method(FEM) to investigate how pressure on the lumbar spine changes during dynamic movements in different postures: standing, erect sitting on a chair, slumped sitting on a chair, and sitting on the floor. Three load modes (flexion, lateral bending, and axial rotation) were applied to the FEM, simulating movements of the lumbar spine. Results showed no significant difference in pressure distribution on the annulus fiber and nucleus pulposus, representing intradiscal pressure, as well as on the cortical bone during movements between standing and erect sitting postures. However, both slumped sitting on a chair and sitting on the floor postures significantly increased pressure on the nucleus pulposus, annulus fibrosus, and cortical bone in all three movements when compared to standing or erect sitting on a chair. Notably, sitting on the floor resulted in even higher pressure on the nucleus pulposus and annulus fibers compared to slumped sitting on a chair. The decreased lumbar lordosis while sitting on the floor led to the highest increase in pressure on the annulus fiber and nucleus pulposus in the lumbar spine. In conclusion, maintaining an erect sitting position with increased lumbar lordosis during seated activities can effectively reduce intradiscal pressure and cortical bone stress associated with degenerative disc diseases and spinal deformities.
ISSN:2306-5354
2306-5354
DOI:10.3390/bioengineering10091051