Loading…
Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays
Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular d...
Saved in:
Published in: | Nature communications 2017-07, Vol.8 (1), p.16057-16057, Article 16057 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093 |
---|---|
cites | cdi_FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093 |
container_end_page | 16057 |
container_issue | 1 |
container_start_page | 16057 |
container_title | Nature communications |
container_volume | 8 |
creator | Wasio, Natalie A. Slough, Diana P. Smith, Zachary C. Ivimey, Christopher J. Thomas III, Samuel W. Lin, Yu-Shan Sykes, E. Charles H. |
description | Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted
a priori
.
Single molecular machines are capable of a variety of functions, but methods to couple motion between them are still lacking. Here, Wasio
et al
. report the emergent behaviour of spontaneously formed two-dimensional crystals, which display correlated switching of their sub-molecular rotor units. |
doi_str_mv | 10.1038/ncomms16057 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_632c749e2969498ebca3893a5d896387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_632c749e2969498ebca3893a5d896387</doaj_id><sourcerecordid>1915544546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093</originalsourceid><addsrcrecordid>eNptkk1rFTEUhgdRbKlduZcBN4KOJpPvjSAXPwoFNwruwpnkzG0umUlN5lr6702da7kVs0nI--TJITlN85ySt5Qw_W52aZoKlUSoR81pTzjtqOrZ46P1SXNeyo7UwQzVnD9tTnotlaBSnjY_NilnjLCgb3NaYAlphtiWm7C4qzBv2zC3y03qfJhwLocQ49hBKTgNsR6bUkS3j5DvBCm3kDPclmfNkxFiwfPDfNZ8__Tx2-ZLd_n188Xmw2XnhNJLpwbwBqlhnnigQqEU0shBSMG80dCDo8pwbpxjfkQlxnF0hAg5cqd6JIadNRer1yfY2escJsi3NkGwfzZS3lrIS3ARrWS9U9xgb6ThRuPggGnDQHhtJNOqut6vruv9MKF3OC8Z4gPpw2QOV3abflkhCNGaV8GrgyCnn3ssi51CcRgjzJj2xVJDhdZES13Rl_-gu7TP9XlXSnAuuKzU65VyOZWScbwvhhJ71wD2qAEq_eK4_nv273dX4M0KlBrNW8xHl_7H9xvtTbze</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915544546</pqid></control><display><type>article</type><title>Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wasio, Natalie A. ; Slough, Diana P. ; Smith, Zachary C. ; Ivimey, Christopher J. ; Thomas III, Samuel W. ; Lin, Yu-Shan ; Sykes, E. Charles H.</creator><creatorcontrib>Wasio, Natalie A. ; Slough, Diana P. ; Smith, Zachary C. ; Ivimey, Christopher J. ; Thomas III, Samuel W. ; Lin, Yu-Shan ; Sykes, E. Charles H.</creatorcontrib><description>Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted
a priori
.
Single molecular machines are capable of a variety of functions, but methods to couple motion between them are still lacking. Here, Wasio
et al
. report the emergent behaviour of spontaneously formed two-dimensional crystals, which display correlated switching of their sub-molecular rotor units.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms16057</identifier><identifier>PMID: 28675166</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 142/136 ; 639/638/542/968 ; Arrays ; Construction ; Correlation ; Coupling (molecular) ; Crystals ; Devices ; Experiments ; Humanities and Social Sciences ; Interfaces ; Microscopy ; Molecular structure ; multidisciplinary ; Rotors ; Scanning ; Science ; Science (multidisciplinary) ; Self-assembly ; Statistical analysis ; Switches ; Switching</subject><ispartof>Nature communications, 2017-07, Vol.8 (1), p.16057-16057, Article 16057</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093</citedby><cites>FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1915544546/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1915544546?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28675166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wasio, Natalie A.</creatorcontrib><creatorcontrib>Slough, Diana P.</creatorcontrib><creatorcontrib>Smith, Zachary C.</creatorcontrib><creatorcontrib>Ivimey, Christopher J.</creatorcontrib><creatorcontrib>Thomas III, Samuel W.</creatorcontrib><creatorcontrib>Lin, Yu-Shan</creatorcontrib><creatorcontrib>Sykes, E. Charles H.</creatorcontrib><title>Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted
a priori
.
Single molecular machines are capable of a variety of functions, but methods to couple motion between them are still lacking. Here, Wasio
et al
. report the emergent behaviour of spontaneously formed two-dimensional crystals, which display correlated switching of their sub-molecular rotor units.</description><subject>119/118</subject><subject>142/136</subject><subject>639/638/542/968</subject><subject>Arrays</subject><subject>Construction</subject><subject>Correlation</subject><subject>Coupling (molecular)</subject><subject>Crystals</subject><subject>Devices</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Interfaces</subject><subject>Microscopy</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Rotors</subject><subject>Scanning</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Self-assembly</subject><subject>Statistical analysis</subject><subject>Switches</subject><subject>Switching</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1rFTEUhgdRbKlduZcBN4KOJpPvjSAXPwoFNwruwpnkzG0umUlN5lr6702da7kVs0nI--TJITlN85ySt5Qw_W52aZoKlUSoR81pTzjtqOrZ46P1SXNeyo7UwQzVnD9tTnotlaBSnjY_NilnjLCgb3NaYAlphtiWm7C4qzBv2zC3y03qfJhwLocQ49hBKTgNsR6bUkS3j5DvBCm3kDPclmfNkxFiwfPDfNZ8__Tx2-ZLd_n188Xmw2XnhNJLpwbwBqlhnnigQqEU0shBSMG80dCDo8pwbpxjfkQlxnF0hAg5cqd6JIadNRer1yfY2escJsi3NkGwfzZS3lrIS3ARrWS9U9xgb6ThRuPggGnDQHhtJNOqut6vruv9MKF3OC8Z4gPpw2QOV3abflkhCNGaV8GrgyCnn3ssi51CcRgjzJj2xVJDhdZES13Rl_-gu7TP9XlXSnAuuKzU65VyOZWScbwvhhJ71wD2qAEq_eK4_nv273dX4M0KlBrNW8xHl_7H9xvtTbze</recordid><startdate>20170704</startdate><enddate>20170704</enddate><creator>Wasio, Natalie A.</creator><creator>Slough, Diana P.</creator><creator>Smith, Zachary C.</creator><creator>Ivimey, Christopher J.</creator><creator>Thomas III, Samuel W.</creator><creator>Lin, Yu-Shan</creator><creator>Sykes, E. Charles H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170704</creationdate><title>Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays</title><author>Wasio, Natalie A. ; Slough, Diana P. ; Smith, Zachary C. ; Ivimey, Christopher J. ; Thomas III, Samuel W. ; Lin, Yu-Shan ; Sykes, E. Charles H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>119/118</topic><topic>142/136</topic><topic>639/638/542/968</topic><topic>Arrays</topic><topic>Construction</topic><topic>Correlation</topic><topic>Coupling (molecular)</topic><topic>Crystals</topic><topic>Devices</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Interfaces</topic><topic>Microscopy</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Rotors</topic><topic>Scanning</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Self-assembly</topic><topic>Statistical analysis</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasio, Natalie A.</creatorcontrib><creatorcontrib>Slough, Diana P.</creatorcontrib><creatorcontrib>Smith, Zachary C.</creatorcontrib><creatorcontrib>Ivimey, Christopher J.</creatorcontrib><creatorcontrib>Thomas III, Samuel W.</creatorcontrib><creatorcontrib>Lin, Yu-Shan</creatorcontrib><creatorcontrib>Sykes, E. Charles H.</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasio, Natalie A.</au><au>Slough, Diana P.</au><au>Smith, Zachary C.</au><au>Ivimey, Christopher J.</au><au>Thomas III, Samuel W.</au><au>Lin, Yu-Shan</au><au>Sykes, E. Charles H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2017-07-04</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>16057</spage><epage>16057</epage><pages>16057-16057</pages><artnum>16057</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted
a priori
.
Single molecular machines are capable of a variety of functions, but methods to couple motion between them are still lacking. Here, Wasio
et al
. report the emergent behaviour of spontaneously formed two-dimensional crystals, which display correlated switching of their sub-molecular rotor units.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28675166</pmid><doi>10.1038/ncomms16057</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2017-07, Vol.8 (1), p.16057-16057, Article 16057 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_632c749e2969498ebca3893a5d896387 |
source | PubMed (Medline); Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 119/118 142/136 639/638/542/968 Arrays Construction Correlation Coupling (molecular) Crystals Devices Experiments Humanities and Social Sciences Interfaces Microscopy Molecular structure multidisciplinary Rotors Scanning Science Science (multidisciplinary) Self-assembly Statistical analysis Switches Switching |
title | Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20rotational%20switching%20in%20two-dimensional%20self-assembled%20molecular%20rotor%20arrays&rft.jtitle=Nature%20communications&rft.au=Wasio,%20Natalie%20A.&rft.date=2017-07-04&rft.volume=8&rft.issue=1&rft.spage=16057&rft.epage=16057&rft.pages=16057-16057&rft.artnum=16057&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms16057&rft_dat=%3Cproquest_doaj_%3E1915544546%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-7bad9e193d0da157e65696b5653d98a2ac179449cc3dfe75fffc0056f4c72e093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1915544546&rft_id=info:pmid/28675166&rfr_iscdi=true |