Loading…

Broadband Achromatic Metasurfaces for Longwave Infrared Applications

Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conven...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-10, Vol.11 (10), p.2760
Main Authors: Song, Naitao, Xu, Nianxi, Shan, Dongzhi, Zhao, Yuanhang, Gao, Jinsong, Tang, Yang, Sun, Qiao, Chen, Xin, Wang, Yansong, Feng, Xiaoguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53
cites cdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53
container_end_page
container_issue 10
container_start_page 2760
container_title Nanomaterials (Basel, Switzerland)
container_volume 11
creator Song, Naitao
Xu, Nianxi
Shan, Dongzhi
Zhao, Yuanhang
Gao, Jinsong
Tang, Yang
Sun, Qiao
Chen, Xin
Wang, Yansong
Feng, Xiaoguo
description Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.
doi_str_mv 10.3390/nano11102760
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63304ef93a854d749ba78ac11a34061c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63304ef93a854d749ba78ac11a34061c</doaj_id><sourcerecordid>2584784720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7jLuzR_Q4MWDo_n-uAjr-jUw4kXPoTpdme2hJxmT7pX998adRXYNBQmph4fiLUJeMvpWCEffJUiZMUa50fQJOefUuLV0jj198D4jF7XuaTuOCavEc3ImpLaKU3FOPn4oGYYe0tBdhuuSDzCPofuGM9SlRAhYu5hLt81p9xtusNukWKBgo4_HaQyNzqm-IM8iTBUv7u8V-fn504-rr-vt9y-bq8vtOkil5rVwojfa0gEljwPTDEO0NGgZASPXXCJHJqOiIfRSOwjBGamkGLTuDUYlVmRz8g4Z9v5YxgOUW59h9Hcfuew8lDb_hF4LQSVGJ8AqORjpejAWAmMgJNUsNNf7k-u49AccAqa5wPRI-riTxmu_yze-JWipM03w-l5Q8q8F6-wPYw04TZAwL9VzZaVp1WJekVf_ofu8lNSiuqOk5VaKRr05UaHkWgvGf8Mw6v9u2z_ctvgDcNubVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584482843</pqid></control><display><type>article</type><title>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Song, Naitao ; Xu, Nianxi ; Shan, Dongzhi ; Zhao, Yuanhang ; Gao, Jinsong ; Tang, Yang ; Sun, Qiao ; Chen, Xin ; Wang, Yansong ; Feng, Xiaoguo</creator><creatorcontrib>Song, Naitao ; Xu, Nianxi ; Shan, Dongzhi ; Zhao, Yuanhang ; Gao, Jinsong ; Tang, Yang ; Sun, Qiao ; Chen, Xin ; Wang, Yansong ; Feng, Xiaoguo</creatorcontrib><description>Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11102760</identifier><identifier>PMID: 34685203</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>achromatic metalens ; achromatic metasurface grating ; Broadband ; dynamic phase ; Efficiency ; Fabrication ; Germanium ; Group delay ; Integrated optics ; Light ; longwave infrared ; Metasurfaces ; Numerical aperture ; Optics ; Pancharatnam–Berry phase ; Platforms ; Production costs ; Ray tracing ; Strehl ratio ; Thermal imaging ; Wireless communications</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-10, Vol.11 (10), p.2760</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</citedby><cites>FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584482843/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584482843?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Song, Naitao</creatorcontrib><creatorcontrib>Xu, Nianxi</creatorcontrib><creatorcontrib>Shan, Dongzhi</creatorcontrib><creatorcontrib>Zhao, Yuanhang</creatorcontrib><creatorcontrib>Gao, Jinsong</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Sun, Qiao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Wang, Yansong</creatorcontrib><creatorcontrib>Feng, Xiaoguo</creatorcontrib><title>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</title><title>Nanomaterials (Basel, Switzerland)</title><description>Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.</description><subject>achromatic metalens</subject><subject>achromatic metasurface grating</subject><subject>Broadband</subject><subject>dynamic phase</subject><subject>Efficiency</subject><subject>Fabrication</subject><subject>Germanium</subject><subject>Group delay</subject><subject>Integrated optics</subject><subject>Light</subject><subject>longwave infrared</subject><subject>Metasurfaces</subject><subject>Numerical aperture</subject><subject>Optics</subject><subject>Pancharatnam–Berry phase</subject><subject>Platforms</subject><subject>Production costs</subject><subject>Ray tracing</subject><subject>Strehl ratio</subject><subject>Thermal imaging</subject><subject>Wireless communications</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2LFDEQhoMo7jLuzR_Q4MWDo_n-uAjr-jUw4kXPoTpdme2hJxmT7pX998adRXYNBQmph4fiLUJeMvpWCEffJUiZMUa50fQJOefUuLV0jj198D4jF7XuaTuOCavEc3ImpLaKU3FOPn4oGYYe0tBdhuuSDzCPofuGM9SlRAhYu5hLt81p9xtusNukWKBgo4_HaQyNzqm-IM8iTBUv7u8V-fn504-rr-vt9y-bq8vtOkil5rVwojfa0gEljwPTDEO0NGgZASPXXCJHJqOiIfRSOwjBGamkGLTuDUYlVmRz8g4Z9v5YxgOUW59h9Hcfuew8lDb_hF4LQSVGJ8AqORjpejAWAmMgJNUsNNf7k-u49AccAqa5wPRI-riTxmu_yze-JWipM03w-l5Q8q8F6-wPYw04TZAwL9VzZaVp1WJekVf_ofu8lNSiuqOk5VaKRr05UaHkWgvGf8Mw6v9u2z_ctvgDcNubVQ</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Song, Naitao</creator><creator>Xu, Nianxi</creator><creator>Shan, Dongzhi</creator><creator>Zhao, Yuanhang</creator><creator>Gao, Jinsong</creator><creator>Tang, Yang</creator><creator>Sun, Qiao</creator><creator>Chen, Xin</creator><creator>Wang, Yansong</creator><creator>Feng, Xiaoguo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211018</creationdate><title>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</title><author>Song, Naitao ; Xu, Nianxi ; Shan, Dongzhi ; Zhao, Yuanhang ; Gao, Jinsong ; Tang, Yang ; Sun, Qiao ; Chen, Xin ; Wang, Yansong ; Feng, Xiaoguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>achromatic metalens</topic><topic>achromatic metasurface grating</topic><topic>Broadband</topic><topic>dynamic phase</topic><topic>Efficiency</topic><topic>Fabrication</topic><topic>Germanium</topic><topic>Group delay</topic><topic>Integrated optics</topic><topic>Light</topic><topic>longwave infrared</topic><topic>Metasurfaces</topic><topic>Numerical aperture</topic><topic>Optics</topic><topic>Pancharatnam–Berry phase</topic><topic>Platforms</topic><topic>Production costs</topic><topic>Ray tracing</topic><topic>Strehl ratio</topic><topic>Thermal imaging</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Naitao</creatorcontrib><creatorcontrib>Xu, Nianxi</creatorcontrib><creatorcontrib>Shan, Dongzhi</creatorcontrib><creatorcontrib>Zhao, Yuanhang</creatorcontrib><creatorcontrib>Gao, Jinsong</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Sun, Qiao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Wang, Yansong</creatorcontrib><creatorcontrib>Feng, Xiaoguo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Naitao</au><au>Xu, Nianxi</au><au>Shan, Dongzhi</au><au>Zhao, Yuanhang</au><au>Gao, Jinsong</au><au>Tang, Yang</au><au>Sun, Qiao</au><au>Chen, Xin</au><au>Wang, Yansong</au><au>Feng, Xiaoguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>11</volume><issue>10</issue><spage>2760</spage><pages>2760-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34685203</pmid><doi>10.3390/nano11102760</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2021-10, Vol.11 (10), p.2760
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_63304ef93a854d749ba78ac11a34061c
source Publicly Available Content Database; PubMed Central
subjects achromatic metalens
achromatic metasurface grating
Broadband
dynamic phase
Efficiency
Fabrication
Germanium
Group delay
Integrated optics
Light
longwave infrared
Metasurfaces
Numerical aperture
Optics
Pancharatnam–Berry phase
Platforms
Production costs
Ray tracing
Strehl ratio
Thermal imaging
Wireless communications
title Broadband Achromatic Metasurfaces for Longwave Infrared Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Achromatic%20Metasurfaces%20for%20Longwave%20Infrared%20Applications&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Song,%20Naitao&rft.date=2021-10-18&rft.volume=11&rft.issue=10&rft.spage=2760&rft.pages=2760-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11102760&rft_dat=%3Cproquest_doaj_%3E2584784720%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584482843&rft_id=info:pmid/34685203&rfr_iscdi=true