Loading…
Broadband Achromatic Metasurfaces for Longwave Infrared Applications
Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conven...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-10, Vol.11 (10), p.2760 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53 |
container_end_page | |
container_issue | 10 |
container_start_page | 2760 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 11 |
creator | Song, Naitao Xu, Nianxi Shan, Dongzhi Zhao, Yuanhang Gao, Jinsong Tang, Yang Sun, Qiao Chen, Xin Wang, Yansong Feng, Xiaoguo |
description | Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications. |
doi_str_mv | 10.3390/nano11102760 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63304ef93a854d749ba78ac11a34061c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63304ef93a854d749ba78ac11a34061c</doaj_id><sourcerecordid>2584784720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7jLuzR_Q4MWDo_n-uAjr-jUw4kXPoTpdme2hJxmT7pX998adRXYNBQmph4fiLUJeMvpWCEffJUiZMUa50fQJOefUuLV0jj198D4jF7XuaTuOCavEc3ImpLaKU3FOPn4oGYYe0tBdhuuSDzCPofuGM9SlRAhYu5hLt81p9xtusNukWKBgo4_HaQyNzqm-IM8iTBUv7u8V-fn504-rr-vt9y-bq8vtOkil5rVwojfa0gEljwPTDEO0NGgZASPXXCJHJqOiIfRSOwjBGamkGLTuDUYlVmRz8g4Z9v5YxgOUW59h9Hcfuew8lDb_hF4LQSVGJ8AqORjpejAWAmMgJNUsNNf7k-u49AccAqa5wPRI-riTxmu_yze-JWipM03w-l5Q8q8F6-wPYw04TZAwL9VzZaVp1WJekVf_ofu8lNSiuqOk5VaKRr05UaHkWgvGf8Mw6v9u2z_ctvgDcNubVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584482843</pqid></control><display><type>article</type><title>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Song, Naitao ; Xu, Nianxi ; Shan, Dongzhi ; Zhao, Yuanhang ; Gao, Jinsong ; Tang, Yang ; Sun, Qiao ; Chen, Xin ; Wang, Yansong ; Feng, Xiaoguo</creator><creatorcontrib>Song, Naitao ; Xu, Nianxi ; Shan, Dongzhi ; Zhao, Yuanhang ; Gao, Jinsong ; Tang, Yang ; Sun, Qiao ; Chen, Xin ; Wang, Yansong ; Feng, Xiaoguo</creatorcontrib><description>Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11102760</identifier><identifier>PMID: 34685203</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>achromatic metalens ; achromatic metasurface grating ; Broadband ; dynamic phase ; Efficiency ; Fabrication ; Germanium ; Group delay ; Integrated optics ; Light ; longwave infrared ; Metasurfaces ; Numerical aperture ; Optics ; Pancharatnam–Berry phase ; Platforms ; Production costs ; Ray tracing ; Strehl ratio ; Thermal imaging ; Wireless communications</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-10, Vol.11 (10), p.2760</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</citedby><cites>FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584482843/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584482843?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Song, Naitao</creatorcontrib><creatorcontrib>Xu, Nianxi</creatorcontrib><creatorcontrib>Shan, Dongzhi</creatorcontrib><creatorcontrib>Zhao, Yuanhang</creatorcontrib><creatorcontrib>Gao, Jinsong</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Sun, Qiao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Wang, Yansong</creatorcontrib><creatorcontrib>Feng, Xiaoguo</creatorcontrib><title>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</title><title>Nanomaterials (Basel, Switzerland)</title><description>Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.</description><subject>achromatic metalens</subject><subject>achromatic metasurface grating</subject><subject>Broadband</subject><subject>dynamic phase</subject><subject>Efficiency</subject><subject>Fabrication</subject><subject>Germanium</subject><subject>Group delay</subject><subject>Integrated optics</subject><subject>Light</subject><subject>longwave infrared</subject><subject>Metasurfaces</subject><subject>Numerical aperture</subject><subject>Optics</subject><subject>Pancharatnam–Berry phase</subject><subject>Platforms</subject><subject>Production costs</subject><subject>Ray tracing</subject><subject>Strehl ratio</subject><subject>Thermal imaging</subject><subject>Wireless communications</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2LFDEQhoMo7jLuzR_Q4MWDo_n-uAjr-jUw4kXPoTpdme2hJxmT7pX998adRXYNBQmph4fiLUJeMvpWCEffJUiZMUa50fQJOefUuLV0jj198D4jF7XuaTuOCavEc3ImpLaKU3FOPn4oGYYe0tBdhuuSDzCPofuGM9SlRAhYu5hLt81p9xtusNukWKBgo4_HaQyNzqm-IM8iTBUv7u8V-fn504-rr-vt9y-bq8vtOkil5rVwojfa0gEljwPTDEO0NGgZASPXXCJHJqOiIfRSOwjBGamkGLTuDUYlVmRz8g4Z9v5YxgOUW59h9Hcfuew8lDb_hF4LQSVGJ8AqORjpejAWAmMgJNUsNNf7k-u49AccAqa5wPRI-riTxmu_yze-JWipM03w-l5Q8q8F6-wPYw04TZAwL9VzZaVp1WJekVf_ofu8lNSiuqOk5VaKRr05UaHkWgvGf8Mw6v9u2z_ctvgDcNubVQ</recordid><startdate>20211018</startdate><enddate>20211018</enddate><creator>Song, Naitao</creator><creator>Xu, Nianxi</creator><creator>Shan, Dongzhi</creator><creator>Zhao, Yuanhang</creator><creator>Gao, Jinsong</creator><creator>Tang, Yang</creator><creator>Sun, Qiao</creator><creator>Chen, Xin</creator><creator>Wang, Yansong</creator><creator>Feng, Xiaoguo</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20211018</creationdate><title>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</title><author>Song, Naitao ; Xu, Nianxi ; Shan, Dongzhi ; Zhao, Yuanhang ; Gao, Jinsong ; Tang, Yang ; Sun, Qiao ; Chen, Xin ; Wang, Yansong ; Feng, Xiaoguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>achromatic metalens</topic><topic>achromatic metasurface grating</topic><topic>Broadband</topic><topic>dynamic phase</topic><topic>Efficiency</topic><topic>Fabrication</topic><topic>Germanium</topic><topic>Group delay</topic><topic>Integrated optics</topic><topic>Light</topic><topic>longwave infrared</topic><topic>Metasurfaces</topic><topic>Numerical aperture</topic><topic>Optics</topic><topic>Pancharatnam–Berry phase</topic><topic>Platforms</topic><topic>Production costs</topic><topic>Ray tracing</topic><topic>Strehl ratio</topic><topic>Thermal imaging</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Naitao</creatorcontrib><creatorcontrib>Xu, Nianxi</creatorcontrib><creatorcontrib>Shan, Dongzhi</creatorcontrib><creatorcontrib>Zhao, Yuanhang</creatorcontrib><creatorcontrib>Gao, Jinsong</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Sun, Qiao</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Wang, Yansong</creatorcontrib><creatorcontrib>Feng, Xiaoguo</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Naitao</au><au>Xu, Nianxi</au><au>Shan, Dongzhi</au><au>Zhao, Yuanhang</au><au>Gao, Jinsong</au><au>Tang, Yang</au><au>Sun, Qiao</au><au>Chen, Xin</au><au>Wang, Yansong</au><au>Feng, Xiaoguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Achromatic Metasurfaces for Longwave Infrared Applications</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2021-10-18</date><risdate>2021</risdate><volume>11</volume><issue>10</issue><spage>2760</spage><pages>2760-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Longwave infrared (LWIR) optics are essential for several technologies, such as thermal imaging and wireless communication, but their development is hindered by their bulk and high fabrication costs. Metasurfaces have recently emerged as powerful platforms for LWIR integrated optics; however, conventional metasurfaces are highly chromatic, which adversely affects their performance in broadband applications. In this work, the chromatic dispersion properties of metasurfaces are analyzed via ray tracing, and a general method for correcting chromatic aberrations of metasurfaces is presented. By combining the dynamic and geometric phases, the desired group delay and phase profiles are imparted to the metasurfaces simultaneously, resulting in good achromatic performance. Two broadband achromatic metasurfaces based on all-germanium platforms are demonstrated in the LWIR: a broadband achromatic metalens with a numerical aperture of 0.32, an average intensity efficiency of 31%, and a Strehl ratio above 0.8 from 9.6 μm to 11.6 μm, and a broadband achromatic metasurface grating with a constant deflection angle of 30° from 9.6 μm to 11.6 μm. Compared with state-of-the-art chromatic-aberration-restricted LWIR metasurfaces, this work represents a substantial advance and brings the field a step closer to practical applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34685203</pmid><doi>10.3390/nano11102760</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2021-10, Vol.11 (10), p.2760 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_63304ef93a854d749ba78ac11a34061c |
source | Publicly Available Content Database; PubMed Central |
subjects | achromatic metalens achromatic metasurface grating Broadband dynamic phase Efficiency Fabrication Germanium Group delay Integrated optics Light longwave infrared Metasurfaces Numerical aperture Optics Pancharatnam–Berry phase Platforms Production costs Ray tracing Strehl ratio Thermal imaging Wireless communications |
title | Broadband Achromatic Metasurfaces for Longwave Infrared Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Achromatic%20Metasurfaces%20for%20Longwave%20Infrared%20Applications&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Song,%20Naitao&rft.date=2021-10-18&rft.volume=11&rft.issue=10&rft.spage=2760&rft.pages=2760-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11102760&rft_dat=%3Cproquest_doaj_%3E2584784720%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-393b7680de42fd161ecf80c64faef2624e2e14f50ccb469acc974543d66b7ef53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584482843&rft_id=info:pmid/34685203&rfr_iscdi=true |