Loading…

Reconstruction of Exposure to m-Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation

There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biolog...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Toxicology 2012, Vol.2012 (2012), p.517-534
Main Authors: McNally, Kevin, Cotton, Richard, Cocker, John, Jones, Kate, Bartels, Mike, Rick, David, Price, Paul, Loizou, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There are numerous biomonitoring programs, both recent and ongoing, to evaluate environmental exposure of humans to chemicals. Due to the lack of exposure and kinetic data, the correlation of biomarker levels with exposure concentrations leads to difficulty in utilizing biomonitoring data for biological guidance values. Exposure reconstruction or reverse dosimetry is the retrospective interpretation of external exposure consistent with biomonitoring data. We investigated the integration of physiologically based pharmacokinetic modelling, global sensitivity analysis, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of inhalation exposure to m-xylene. We used exhaled breath and venous blood m-xylene and urinary 3-methylhippuric acid measurements from a controlled human volunteer study in order to evaluate the ability of our computational framework to predict known inhalation exposures. We also investigated the importance of model structure and dimensionality with respect to its ability to reconstruct exposure.
ISSN:1687-8191
1687-8205
DOI:10.1155/2012/760281