Loading…

On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions

We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uni...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2023-01, Vol.15 (1), p.5
Main Authors: Arul, Ramasamy, Karthikeyan, Panjayan, Karthikeyan, Kulandhaivel, Geetha, Palanisamy, Alruwaily, Ymnah, Almaghamsi, Lamya, El-hady, El-sayed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203
cites cdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203
container_end_page
container_issue 1
container_start_page 5
container_title Symmetry (Basel)
container_volume 15
creator Arul, Ramasamy
Karthikeyan, Panjayan
Karthikeyan, Kulandhaivel
Geetha, Palanisamy
Alruwaily, Ymnah
Almaghamsi, Lamya
El-hady, El-sayed
description We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.
doi_str_mv 10.3390/sym15010005
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6353ca3ee82e46d3b8004246113eb298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752149326</galeid><doaj_id>oai_doaj_org_article_6353ca3ee82e46d3b8004246113eb298</doaj_id><sourcerecordid>A752149326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</originalsourceid><addsrcrecordid>eNpNkdtKxDAQhosoKOqVL1DwUqrTpE2bS1lPC4ve6HWYzaFk6Sa7SSr4Rj6Nz2TWFZEEMvzzz0dmpiguarimlMNN_FjXLdQA0B4UJwQ6WvWcN4f_4uPiPMYV7CzQNgxOiuHFlc_ejdZpDOXXZzXDzZR8-RBQJusdjuXcJT0EX95ZY3TQLtks3m8n3OVjTr_78d26Ycep5i4mdPlqP8Vy5p2yP7az4sjgGPX573tavD3cv86eqsXL43x2u6hkAzRV1BipDELL64YzIqHjkjLDlMKO9EgYItacKd5rRQDNUhEFkNtnZEmBAD0t5nuu8rgSm2DXGD6ERyt-BB8GgSFZOWrBaEslUq17ohum6LIHaEjD6prqJeF9Zl3uWZvgt5OOSaz8FPJIoiAd6wgH2vDsut67BsxQ64xPeXb5KL220jttbNZvu5bklihhueBqXyCDjzFo8_fNGsRuk-LfJuk3OeeRGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767290349</pqid></control><display><type>article</type><title>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Arul, Ramasamy ; Karthikeyan, Panjayan ; Karthikeyan, Kulandhaivel ; Geetha, Palanisamy ; Alruwaily, Ymnah ; Almaghamsi, Lamya ; El-hady, El-sayed</creator><creatorcontrib>Arul, Ramasamy ; Karthikeyan, Panjayan ; Karthikeyan, Kulandhaivel ; Geetha, Palanisamy ; Alruwaily, Ymnah ; Almaghamsi, Lamya ; El-hady, El-sayed</creatorcontrib><description>We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15010005</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Banach spaces ; Boundary conditions ; Caputo fractional derivative ; Differential equations ; existence and uniqueness ; fractional boundary conditions ; fractional differential equations ; Mathematical analysis ; Porous materials ; Uniqueness</subject><ispartof>Symmetry (Basel), 2023-01, Vol.15 (1), p.5</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</citedby><cites>FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</cites><orcidid>0000-0002-4955-0842 ; 0000-0002-4138-7067 ; 0000-0001-6562-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767290349/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767290349?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Arul, Ramasamy</creatorcontrib><creatorcontrib>Karthikeyan, Panjayan</creatorcontrib><creatorcontrib>Karthikeyan, Kulandhaivel</creatorcontrib><creatorcontrib>Geetha, Palanisamy</creatorcontrib><creatorcontrib>Alruwaily, Ymnah</creatorcontrib><creatorcontrib>Almaghamsi, Lamya</creatorcontrib><creatorcontrib>El-hady, El-sayed</creatorcontrib><title>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</title><title>Symmetry (Basel)</title><description>We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.</description><subject>Banach spaces</subject><subject>Boundary conditions</subject><subject>Caputo fractional derivative</subject><subject>Differential equations</subject><subject>existence and uniqueness</subject><subject>fractional boundary conditions</subject><subject>fractional differential equations</subject><subject>Mathematical analysis</subject><subject>Porous materials</subject><subject>Uniqueness</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKxDAQhosoKOqVL1DwUqrTpE2bS1lPC4ve6HWYzaFk6Sa7SSr4Rj6Nz2TWFZEEMvzzz0dmpiguarimlMNN_FjXLdQA0B4UJwQ6WvWcN4f_4uPiPMYV7CzQNgxOiuHFlc_ejdZpDOXXZzXDzZR8-RBQJusdjuXcJT0EX95ZY3TQLtks3m8n3OVjTr_78d26Ycep5i4mdPlqP8Vy5p2yP7az4sjgGPX573tavD3cv86eqsXL43x2u6hkAzRV1BipDELL64YzIqHjkjLDlMKO9EgYItacKd5rRQDNUhEFkNtnZEmBAD0t5nuu8rgSm2DXGD6ERyt-BB8GgSFZOWrBaEslUq17ohum6LIHaEjD6prqJeF9Zl3uWZvgt5OOSaz8FPJIoiAd6wgH2vDsut67BsxQ64xPeXb5KL220jttbNZvu5bklihhueBqXyCDjzFo8_fNGsRuk-LfJuk3OeeRGA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Arul, Ramasamy</creator><creator>Karthikeyan, Panjayan</creator><creator>Karthikeyan, Kulandhaivel</creator><creator>Geetha, Palanisamy</creator><creator>Alruwaily, Ymnah</creator><creator>Almaghamsi, Lamya</creator><creator>El-hady, El-sayed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4955-0842</orcidid><orcidid>https://orcid.org/0000-0002-4138-7067</orcidid><orcidid>https://orcid.org/0000-0001-6562-9705</orcidid></search><sort><creationdate>20230101</creationdate><title>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</title><author>Arul, Ramasamy ; Karthikeyan, Panjayan ; Karthikeyan, Kulandhaivel ; Geetha, Palanisamy ; Alruwaily, Ymnah ; Almaghamsi, Lamya ; El-hady, El-sayed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Boundary conditions</topic><topic>Caputo fractional derivative</topic><topic>Differential equations</topic><topic>existence and uniqueness</topic><topic>fractional boundary conditions</topic><topic>fractional differential equations</topic><topic>Mathematical analysis</topic><topic>Porous materials</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arul, Ramasamy</creatorcontrib><creatorcontrib>Karthikeyan, Panjayan</creatorcontrib><creatorcontrib>Karthikeyan, Kulandhaivel</creatorcontrib><creatorcontrib>Geetha, Palanisamy</creatorcontrib><creatorcontrib>Alruwaily, Ymnah</creatorcontrib><creatorcontrib>Almaghamsi, Lamya</creatorcontrib><creatorcontrib>El-hady, El-sayed</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arul, Ramasamy</au><au>Karthikeyan, Panjayan</au><au>Karthikeyan, Kulandhaivel</au><au>Geetha, Palanisamy</au><au>Alruwaily, Ymnah</au><au>Almaghamsi, Lamya</au><au>El-hady, El-sayed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>5</spage><pages>5-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15010005</doi><orcidid>https://orcid.org/0000-0002-4955-0842</orcidid><orcidid>https://orcid.org/0000-0002-4138-7067</orcidid><orcidid>https://orcid.org/0000-0001-6562-9705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2023-01, Vol.15 (1), p.5
issn 2073-8994
2073-8994
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6353ca3ee82e46d3b8004246113eb298
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Banach spaces
Boundary conditions
Caputo fractional derivative
Differential equations
existence and uniqueness
fractional boundary conditions
fractional differential equations
Mathematical analysis
Porous materials
Uniqueness
title On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Nonlinear%20%CE%A8-Caputo%20Fractional%20Integro%20Differential%20Equations%20Involving%20Non-Instantaneous%20Conditions&rft.jtitle=Symmetry%20(Basel)&rft.au=Arul,%20Ramasamy&rft.date=2023-01-01&rft.volume=15&rft.issue=1&rft.spage=5&rft.pages=5-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15010005&rft_dat=%3Cgale_doaj_%3EA752149326%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767290349&rft_id=info:pmid/&rft_galeid=A752149326&rfr_iscdi=true