Loading…
On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions
We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uni...
Saved in:
Published in: | Symmetry (Basel) 2023-01, Vol.15 (1), p.5 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203 |
container_end_page | |
container_issue | 1 |
container_start_page | 5 |
container_title | Symmetry (Basel) |
container_volume | 15 |
creator | Arul, Ramasamy Karthikeyan, Panjayan Karthikeyan, Kulandhaivel Geetha, Palanisamy Alruwaily, Ymnah Almaghamsi, Lamya El-hady, El-sayed |
description | We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions. |
doi_str_mv | 10.3390/sym15010005 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6353ca3ee82e46d3b8004246113eb298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752149326</galeid><doaj_id>oai_doaj_org_article_6353ca3ee82e46d3b8004246113eb298</doaj_id><sourcerecordid>A752149326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</originalsourceid><addsrcrecordid>eNpNkdtKxDAQhosoKOqVL1DwUqrTpE2bS1lPC4ve6HWYzaFk6Sa7SSr4Rj6Nz2TWFZEEMvzzz0dmpiguarimlMNN_FjXLdQA0B4UJwQ6WvWcN4f_4uPiPMYV7CzQNgxOiuHFlc_ejdZpDOXXZzXDzZR8-RBQJusdjuXcJT0EX95ZY3TQLtks3m8n3OVjTr_78d26Ycep5i4mdPlqP8Vy5p2yP7az4sjgGPX573tavD3cv86eqsXL43x2u6hkAzRV1BipDELL64YzIqHjkjLDlMKO9EgYItacKd5rRQDNUhEFkNtnZEmBAD0t5nuu8rgSm2DXGD6ERyt-BB8GgSFZOWrBaEslUq17ohum6LIHaEjD6prqJeF9Zl3uWZvgt5OOSaz8FPJIoiAd6wgH2vDsut67BsxQ64xPeXb5KL220jttbNZvu5bklihhueBqXyCDjzFo8_fNGsRuk-LfJuk3OeeRGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767290349</pqid></control><display><type>article</type><title>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Arul, Ramasamy ; Karthikeyan, Panjayan ; Karthikeyan, Kulandhaivel ; Geetha, Palanisamy ; Alruwaily, Ymnah ; Almaghamsi, Lamya ; El-hady, El-sayed</creator><creatorcontrib>Arul, Ramasamy ; Karthikeyan, Panjayan ; Karthikeyan, Kulandhaivel ; Geetha, Palanisamy ; Alruwaily, Ymnah ; Almaghamsi, Lamya ; El-hady, El-sayed</creatorcontrib><description>We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym15010005</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Banach spaces ; Boundary conditions ; Caputo fractional derivative ; Differential equations ; existence and uniqueness ; fractional boundary conditions ; fractional differential equations ; Mathematical analysis ; Porous materials ; Uniqueness</subject><ispartof>Symmetry (Basel), 2023-01, Vol.15 (1), p.5</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</citedby><cites>FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</cites><orcidid>0000-0002-4955-0842 ; 0000-0002-4138-7067 ; 0000-0001-6562-9705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767290349/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767290349?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Arul, Ramasamy</creatorcontrib><creatorcontrib>Karthikeyan, Panjayan</creatorcontrib><creatorcontrib>Karthikeyan, Kulandhaivel</creatorcontrib><creatorcontrib>Geetha, Palanisamy</creatorcontrib><creatorcontrib>Alruwaily, Ymnah</creatorcontrib><creatorcontrib>Almaghamsi, Lamya</creatorcontrib><creatorcontrib>El-hady, El-sayed</creatorcontrib><title>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</title><title>Symmetry (Basel)</title><description>We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.</description><subject>Banach spaces</subject><subject>Boundary conditions</subject><subject>Caputo fractional derivative</subject><subject>Differential equations</subject><subject>existence and uniqueness</subject><subject>fractional boundary conditions</subject><subject>fractional differential equations</subject><subject>Mathematical analysis</subject><subject>Porous materials</subject><subject>Uniqueness</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdtKxDAQhosoKOqVL1DwUqrTpE2bS1lPC4ve6HWYzaFk6Sa7SSr4Rj6Nz2TWFZEEMvzzz0dmpiguarimlMNN_FjXLdQA0B4UJwQ6WvWcN4f_4uPiPMYV7CzQNgxOiuHFlc_ejdZpDOXXZzXDzZR8-RBQJusdjuXcJT0EX95ZY3TQLtks3m8n3OVjTr_78d26Ycep5i4mdPlqP8Vy5p2yP7az4sjgGPX573tavD3cv86eqsXL43x2u6hkAzRV1BipDELL64YzIqHjkjLDlMKO9EgYItacKd5rRQDNUhEFkNtnZEmBAD0t5nuu8rgSm2DXGD6ERyt-BB8GgSFZOWrBaEslUq17ohum6LIHaEjD6prqJeF9Zl3uWZvgt5OOSaz8FPJIoiAd6wgH2vDsut67BsxQ64xPeXb5KL220jttbNZvu5bklihhueBqXyCDjzFo8_fNGsRuk-LfJuk3OeeRGA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Arul, Ramasamy</creator><creator>Karthikeyan, Panjayan</creator><creator>Karthikeyan, Kulandhaivel</creator><creator>Geetha, Palanisamy</creator><creator>Alruwaily, Ymnah</creator><creator>Almaghamsi, Lamya</creator><creator>El-hady, El-sayed</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4955-0842</orcidid><orcidid>https://orcid.org/0000-0002-4138-7067</orcidid><orcidid>https://orcid.org/0000-0001-6562-9705</orcidid></search><sort><creationdate>20230101</creationdate><title>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</title><author>Arul, Ramasamy ; Karthikeyan, Panjayan ; Karthikeyan, Kulandhaivel ; Geetha, Palanisamy ; Alruwaily, Ymnah ; Almaghamsi, Lamya ; El-hady, El-sayed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Boundary conditions</topic><topic>Caputo fractional derivative</topic><topic>Differential equations</topic><topic>existence and uniqueness</topic><topic>fractional boundary conditions</topic><topic>fractional differential equations</topic><topic>Mathematical analysis</topic><topic>Porous materials</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arul, Ramasamy</creatorcontrib><creatorcontrib>Karthikeyan, Panjayan</creatorcontrib><creatorcontrib>Karthikeyan, Kulandhaivel</creatorcontrib><creatorcontrib>Geetha, Palanisamy</creatorcontrib><creatorcontrib>Alruwaily, Ymnah</creatorcontrib><creatorcontrib>Almaghamsi, Lamya</creatorcontrib><creatorcontrib>El-hady, El-sayed</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arul, Ramasamy</au><au>Karthikeyan, Panjayan</au><au>Karthikeyan, Kulandhaivel</au><au>Geetha, Palanisamy</au><au>Alruwaily, Ymnah</au><au>Almaghamsi, Lamya</au><au>El-hady, El-sayed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions</atitle><jtitle>Symmetry (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>5</spage><pages>5-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential equations involving non-instantaneous impulsive boundary conditions. We investigate the existence and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence results. Additionally, an example is used to explain the results. In this manner, our results represent generalized versions of some recent interesting contributions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym15010005</doi><orcidid>https://orcid.org/0000-0002-4955-0842</orcidid><orcidid>https://orcid.org/0000-0002-4138-7067</orcidid><orcidid>https://orcid.org/0000-0001-6562-9705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2023-01, Vol.15 (1), p.5 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6353ca3ee82e46d3b8004246113eb298 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Banach spaces Boundary conditions Caputo fractional derivative Differential equations existence and uniqueness fractional boundary conditions fractional differential equations Mathematical analysis Porous materials Uniqueness |
title | On Nonlinear Ψ-Caputo Fractional Integro Differential Equations Involving Non-Instantaneous Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Nonlinear%20%CE%A8-Caputo%20Fractional%20Integro%20Differential%20Equations%20Involving%20Non-Instantaneous%20Conditions&rft.jtitle=Symmetry%20(Basel)&rft.au=Arul,%20Ramasamy&rft.date=2023-01-01&rft.volume=15&rft.issue=1&rft.spage=5&rft.pages=5-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym15010005&rft_dat=%3Cgale_doaj_%3EA752149326%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3ffcdfa05914962c079c36f6dda728a26aaa196d98ed20afbd2d0033962b30203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767290349&rft_id=info:pmid/&rft_galeid=A752149326&rfr_iscdi=true |