Loading…

Thermal Performance Investigation of Slotted Fin Minichannel Heat Sink for Microprocessor Cooling

Due to high heat flux generation inside microprocessors, water-cooled heat sinks have gained special attention. For the durability of the microprocessor, this generated flux should be effectively removed. The effective thermal management of high-processing devices is now becoming popular due to high...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2021-10, Vol.14 (19), p.6347
Main Authors: Baig, Taha, Rehman, Zabdur, Tariq, Hussain Ahmed, Manzoor, Shehryar, Ali, Majid, Wadood, Abdul, Rajski, Krzysztof, Park, Herie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to high heat flux generation inside microprocessors, water-cooled heat sinks have gained special attention. For the durability of the microprocessor, this generated flux should be effectively removed. The effective thermal management of high-processing devices is now becoming popular due to high heat flux generation. Heat removal plays a significant role in the longer operation and better performance of heat sinks. In this work, to tackle the heat generation issues, a slotted fin minichannel heat sink (SFMCHS) was investigated by modifying a conventional straight integral fin minichannel heat sink (SIFMCHS). SFMCHSs with fin spacings of 0.5 mm, 1 mm, and 1.5 mm were numerically studied. The numerical results were then compared with SIFMCHSs present in the literature. The base temperatures recorded for two slots per fin minichannel heat sink (SPFMCHS), with 0.5 mm, 1 mm, and 1.5 mm fin spacings, were 42.81 °C, 46.36 °C, and 48.86 °C, respectively, at 1 LPM. The reductions in base temperature achieved with two SPFMCHSs were 9.20%, 8.74%, and 7.39% for 0.5 mm, 1 mm, and 1.5 mm fin spacings, respectively, as compared to SIFMCHSs reported in the literature. The reductions in base temperature noted for three SPFMCHSs were 8.53%, 9.05%, and 5.95% for 0.5 mm, 1 mm, and 1.5 mm fin spacings, respectively, at 1 LPM, as compared to SIFMCHSs reported in the literature. In terms of heat transfer performance, the base temperature and thermal resistance of the 0.5 mm-spaced SPFMCHS is better compared to 1 mm and 1.5 mm fin spacings. The uniform temperature distribution at the base of the heat sink was observed in all cases solved in current work.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14196347