Loading…

Higher-Order Hamiltonian for Circuits with ( α , β ) Elements

The paper studies the construction of the Hamiltonian for circuits built from the ( , ) elements of Chua's periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table....

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2020-04, Vol.22 (4), p.412
Main Authors: Biolek, Zdeněk, Biolek, Dalibor, Biolková, Viera, Kolka, Zdeněk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43
cites cdi_FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43
container_end_page
container_issue 4
container_start_page 412
container_title Entropy (Basel, Switzerland)
container_volume 22
creator Biolek, Zdeněk
Biolek, Dalibor
Biolková, Viera
Kolka, Zdeněk
description The paper studies the construction of the Hamiltonian for circuits built from the ( , ) elements of Chua's periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table. We show that the Hamiltonian can also be constructed via the generalized Tellegen's theorem. According to the ideas of predictive modeling, the resulting Hamiltonian is made up exclusively of the constitutive relations of the elements in the circuit. Within the frame of Ostrogradsky's formalism, the simulation scheme of Σ-circuits is designed and examined with the example of a nonlinear Pais-Uhlenbeck oscillator.
doi_str_mv 10.3390/e22040412
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_635a0244afda4c24b7b443f900a24a9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_635a0244afda4c24b7b443f900a24a9c</doaj_id><sourcerecordid>2468337594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43</originalsourceid><addsrcrecordid>eNpVkc9O3DAQxq2qFdCFQ18A-QhSU_wvjn0pqla0uxISFzhbE2eya5TEYGdBPFb7IDxTQ5eu4DSjmU-_-UYfIV84-yalZWcoBFNMcfGBHHBmbaEkYx_f9Pvkc863jAkpuN4j-1IKo7nRB-R8EVZrTMVVajDRBfShG-MQYKBtTHQekt-EMdPHMK7pCX3-Tb_S5z_0lF502OMw5kPyqYUu49FrnZGbnxfX80VxefVrOf9xWXil-Fg0tZbGcgNgAAUDaCrhrajbCrUVprbKoNW89ApNqXWDumW8ltW0a4xGJWdkueU2EW7dXQo9pCcXIbh_g5hWDtIYfIdOyxKYUAraBpQXqq5qpWRrGQOhwPqJ9X3LutvUPTZ--iNB9w76fjOEtVvFB1eVXJvKToCTV0CK9xvMo-tD9th1MGDcZCeUNlJWpX3xfbqV-hRzTtjuznDmXsJzu_Am7fFbXzvl_7TkX-zVk3c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468337594</pqid></control><display><type>article</type><title>Higher-Order Hamiltonian for Circuits with ( α , β ) Elements</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Biolek, Zdeněk ; Biolek, Dalibor ; Biolková, Viera ; Kolka, Zdeněk</creator><creatorcontrib>Biolek, Zdeněk ; Biolek, Dalibor ; Biolková, Viera ; Kolka, Zdeněk</creatorcontrib><description>The paper studies the construction of the Hamiltonian for circuits built from the ( , ) elements of Chua's periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table. We show that the Hamiltonian can also be constructed via the generalized Tellegen's theorem. According to the ideas of predictive modeling, the resulting Hamiltonian is made up exclusively of the constitutive relations of the elements in the circuit. Within the frame of Ostrogradsky's formalism, the simulation scheme of Σ-circuits is designed and examined with the example of a nonlinear Pais-Uhlenbeck oscillator.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e22040412</identifier><identifier>PMID: 33286186</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Chua’s table ; constitutive relation ; Hamiltonian ; higher-order element ; Lagrangian ; memristor</subject><ispartof>Entropy (Basel, Switzerland), 2020-04, Vol.22 (4), p.412</ispartof><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43</citedby><cites>FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43</cites><orcidid>0000-0002-7607-6146 ; 0000-0003-3055-4621 ; 0000-0003-2589-2722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516879/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516879/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33286186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biolek, Zdeněk</creatorcontrib><creatorcontrib>Biolek, Dalibor</creatorcontrib><creatorcontrib>Biolková, Viera</creatorcontrib><creatorcontrib>Kolka, Zdeněk</creatorcontrib><title>Higher-Order Hamiltonian for Circuits with ( α , β ) Elements</title><title>Entropy (Basel, Switzerland)</title><addtitle>Entropy (Basel)</addtitle><description>The paper studies the construction of the Hamiltonian for circuits built from the ( , ) elements of Chua's periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table. We show that the Hamiltonian can also be constructed via the generalized Tellegen's theorem. According to the ideas of predictive modeling, the resulting Hamiltonian is made up exclusively of the constitutive relations of the elements in the circuit. Within the frame of Ostrogradsky's formalism, the simulation scheme of Σ-circuits is designed and examined with the example of a nonlinear Pais-Uhlenbeck oscillator.</description><subject>Chua’s table</subject><subject>constitutive relation</subject><subject>Hamiltonian</subject><subject>higher-order element</subject><subject>Lagrangian</subject><subject>memristor</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkc9O3DAQxq2qFdCFQ18A-QhSU_wvjn0pqla0uxISFzhbE2eya5TEYGdBPFb7IDxTQ5eu4DSjmU-_-UYfIV84-yalZWcoBFNMcfGBHHBmbaEkYx_f9Pvkc863jAkpuN4j-1IKo7nRB-R8EVZrTMVVajDRBfShG-MQYKBtTHQekt-EMdPHMK7pCX3-Tb_S5z_0lF502OMw5kPyqYUu49FrnZGbnxfX80VxefVrOf9xWXil-Fg0tZbGcgNgAAUDaCrhrajbCrUVprbKoNW89ApNqXWDumW8ltW0a4xGJWdkueU2EW7dXQo9pCcXIbh_g5hWDtIYfIdOyxKYUAraBpQXqq5qpWRrGQOhwPqJ9X3LutvUPTZ--iNB9w76fjOEtVvFB1eVXJvKToCTV0CK9xvMo-tD9th1MGDcZCeUNlJWpX3xfbqV-hRzTtjuznDmXsJzu_Am7fFbXzvl_7TkX-zVk3c</recordid><startdate>20200405</startdate><enddate>20200405</enddate><creator>Biolek, Zdeněk</creator><creator>Biolek, Dalibor</creator><creator>Biolková, Viera</creator><creator>Kolka, Zdeněk</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7607-6146</orcidid><orcidid>https://orcid.org/0000-0003-3055-4621</orcidid><orcidid>https://orcid.org/0000-0003-2589-2722</orcidid></search><sort><creationdate>20200405</creationdate><title>Higher-Order Hamiltonian for Circuits with ( α , β ) Elements</title><author>Biolek, Zdeněk ; Biolek, Dalibor ; Biolková, Viera ; Kolka, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chua’s table</topic><topic>constitutive relation</topic><topic>Hamiltonian</topic><topic>higher-order element</topic><topic>Lagrangian</topic><topic>memristor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biolek, Zdeněk</creatorcontrib><creatorcontrib>Biolek, Dalibor</creatorcontrib><creatorcontrib>Biolková, Viera</creatorcontrib><creatorcontrib>Kolka, Zdeněk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biolek, Zdeněk</au><au>Biolek, Dalibor</au><au>Biolková, Viera</au><au>Kolka, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-Order Hamiltonian for Circuits with ( α , β ) Elements</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><addtitle>Entropy (Basel)</addtitle><date>2020-04-05</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>412</spage><pages>412-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>The paper studies the construction of the Hamiltonian for circuits built from the ( , ) elements of Chua's periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table. We show that the Hamiltonian can also be constructed via the generalized Tellegen's theorem. According to the ideas of predictive modeling, the resulting Hamiltonian is made up exclusively of the constitutive relations of the elements in the circuit. Within the frame of Ostrogradsky's formalism, the simulation scheme of Σ-circuits is designed and examined with the example of a nonlinear Pais-Uhlenbeck oscillator.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33286186</pmid><doi>10.3390/e22040412</doi><orcidid>https://orcid.org/0000-0002-7607-6146</orcidid><orcidid>https://orcid.org/0000-0003-3055-4621</orcidid><orcidid>https://orcid.org/0000-0003-2589-2722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2020-04, Vol.22 (4), p.412
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_635a0244afda4c24b7b443f900a24a9c
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central
subjects Chua’s table
constitutive relation
Hamiltonian
higher-order element
Lagrangian
memristor
title Higher-Order Hamiltonian for Circuits with ( α , β ) Elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-Order%20Hamiltonian%20for%20Circuits%20with%20(%20%CE%B1%20,%20%CE%B2%20)%20Elements&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Biolek,%20Zden%C4%9Bk&rft.date=2020-04-05&rft.volume=22&rft.issue=4&rft.spage=412&rft.pages=412-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e22040412&rft_dat=%3Cproquest_doaj_%3E2468337594%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-db638918aa8ae20aad72c92bf7e6928b948e9615c4e8566de6f01b37928d86e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468337594&rft_id=info:pmid/33286186&rfr_iscdi=true