Loading…
Microglia Mediate Contact-Independent Neuronal Network Remodeling via Secreted Neuraminidase-3 Associated with Extracellular Vesicles
Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, modulate this communication through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon e...
Saved in:
Published in: | ACS central science 2023-11, Vol.9 (11), p.2108-2114 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533 |
container_end_page | 2114 |
container_issue | 11 |
container_start_page | 2108 |
container_title | ACS central science |
container_volume | 9 |
creator | Delaveris, Corleone S Wang, Catherine L Riley, Nicholas M Li, Sherry Kulkarni, Rishikesh U Bertozzi, Carolyn R |
description | Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, modulate this communication through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon exposure to inflammatory stimuli is one unexplored mechanism of modulation. Recent work from our lab showed that treatment of neurons with bacterial sialidases disrupts neuronal network connectivity. Here, we find that activated microglia secrete neuraminidase-3 (Neu3) associated with fusogenic extracellular vesicles. Furthermore, we show that Neu3 mediates contact-independent disruption of neuronal network synchronicity through neuronal glycocalyx remodeling. We observe that
is transcriptionally upregulated upon exposure to inflammatory stimuli and that a genetic knockout of
abrogates the sialidase activity of inflammatory microglial secretions. Moreover, we demonstrate that Neu3 is associated with a subpopulation of extracellular vesicles, possibly exosomes, that are secreted by microglia upon inflammatory insult. Finally, we demonstrate that Neu3 is necessary and sufficient to both desialylate neurons and decrease neuronal network connectivity. These results implicate Neu3 in remodeling of the glycocalyx leading to aberrant network-level activity of neurons, with implications in neuroinflammatory diseases such as Parkinson's disease and Alzheimer's disease. |
doi_str_mv | 10.1021/acscentsci.3c01066 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_635ea71916bf48a991269ca9ccc57db5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_635ea71916bf48a991269ca9ccc57db5</doaj_id><sourcerecordid>2912425814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533</originalsourceid><addsrcrecordid>eNpdUk1v1DAQjRCIVqV_gAOKxIVLih3HTnxC1aqFlVqQ-Lpak_Hs1ks2XmxvCz-A_43TXRbKxTOy37yZ8XtF8ZyzM85q_howIo0pojsTyDhT6lFxXIu2qVot-eND3oij4jTGFWOMN0rJun1aHImOCdFqflz8unYY_HJwUF6TdZConPkxAaZqPlraUD7GVL6nbfAjDDlJdz58Kz_S2lsa3Lgsb3PtJ8JAiew9ENZudBYiVaI8j9HjRGvLO5duyosfKQDSMGwHCOVXig4His-KJwsYIp3u40nx5fLi8-xddfXh7Xx2flVho9tU9dj3loNaaNmJlrXIZI2aiQVybYW0qkcGveiokR1O0dYga5Id56iYFOKkmO94rYeV2QS3hvDTeHDm_sKHpYGQppGMEpKg5ZqrftF0oDWvlUbQiChb28vM9WbHtdn2a7KTGAGGB6QPX0Z3Y5b-1mStOtG0KjO82jME_31LMZm1i9PfwEh-G03daZWF0nJq9vI_6MpvQxYko_JkTZ13bDKq3qGypDEGWhym4cxMrjF_XWP2rslFL_7d41DyxyPiN8rlw0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912425814</pqid></control><display><type>article</type><title>Microglia Mediate Contact-Independent Neuronal Network Remodeling via Secreted Neuraminidase-3 Associated with Extracellular Vesicles</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Delaveris, Corleone S ; Wang, Catherine L ; Riley, Nicholas M ; Li, Sherry ; Kulkarni, Rishikesh U ; Bertozzi, Carolyn R</creator><creatorcontrib>Delaveris, Corleone S ; Wang, Catherine L ; Riley, Nicholas M ; Li, Sherry ; Kulkarni, Rishikesh U ; Bertozzi, Carolyn R</creatorcontrib><description>Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, modulate this communication through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon exposure to inflammatory stimuli is one unexplored mechanism of modulation. Recent work from our lab showed that treatment of neurons with bacterial sialidases disrupts neuronal network connectivity. Here, we find that activated microglia secrete neuraminidase-3 (Neu3) associated with fusogenic extracellular vesicles. Furthermore, we show that Neu3 mediates contact-independent disruption of neuronal network synchronicity through neuronal glycocalyx remodeling. We observe that
is transcriptionally upregulated upon exposure to inflammatory stimuli and that a genetic knockout of
abrogates the sialidase activity of inflammatory microglial secretions. Moreover, we demonstrate that Neu3 is associated with a subpopulation of extracellular vesicles, possibly exosomes, that are secreted by microglia upon inflammatory insult. Finally, we demonstrate that Neu3 is necessary and sufficient to both desialylate neurons and decrease neuronal network connectivity. These results implicate Neu3 in remodeling of the glycocalyx leading to aberrant network-level activity of neurons, with implications in neuroinflammatory diseases such as Parkinson's disease and Alzheimer's disease.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.3c01066</identifier><identifier>PMID: 38033791</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acids ; Alzheimer's disease ; Cell interactions ; Central nervous system ; Electrochemistry ; Exo-a-sialidase ; Exosomes ; Extracellular vesicles ; Hypotheses ; Immune system ; Immunological synapses ; Inflammation ; Membranes ; Microglia ; Movement disorders ; Neural networks ; Neurodegenerative diseases ; Neurons ; Parkinson's disease ; Proteins ; Secretions ; Stimuli ; Synapses ; Vesicles</subject><ispartof>ACS central science, 2023-11, Vol.9 (11), p.2108-2114</ispartof><rights>2023 The Authors. Published by American Chemical Society.</rights><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533</citedby><cites>FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533</cites><orcidid>0000-0003-4482-2754 ; 0000-0001-9855-6194 ; 0000-0002-7291-2338 ; 0000-0002-1536-2966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10683476/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2912425814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38033791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delaveris, Corleone S</creatorcontrib><creatorcontrib>Wang, Catherine L</creatorcontrib><creatorcontrib>Riley, Nicholas M</creatorcontrib><creatorcontrib>Li, Sherry</creatorcontrib><creatorcontrib>Kulkarni, Rishikesh U</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R</creatorcontrib><title>Microglia Mediate Contact-Independent Neuronal Network Remodeling via Secreted Neuraminidase-3 Associated with Extracellular Vesicles</title><title>ACS central science</title><addtitle>ACS Cent Sci</addtitle><description>Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, modulate this communication through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon exposure to inflammatory stimuli is one unexplored mechanism of modulation. Recent work from our lab showed that treatment of neurons with bacterial sialidases disrupts neuronal network connectivity. Here, we find that activated microglia secrete neuraminidase-3 (Neu3) associated with fusogenic extracellular vesicles. Furthermore, we show that Neu3 mediates contact-independent disruption of neuronal network synchronicity through neuronal glycocalyx remodeling. We observe that
is transcriptionally upregulated upon exposure to inflammatory stimuli and that a genetic knockout of
abrogates the sialidase activity of inflammatory microglial secretions. Moreover, we demonstrate that Neu3 is associated with a subpopulation of extracellular vesicles, possibly exosomes, that are secreted by microglia upon inflammatory insult. Finally, we demonstrate that Neu3 is necessary and sufficient to both desialylate neurons and decrease neuronal network connectivity. These results implicate Neu3 in remodeling of the glycocalyx leading to aberrant network-level activity of neurons, with implications in neuroinflammatory diseases such as Parkinson's disease and Alzheimer's disease.</description><subject>Acids</subject><subject>Alzheimer's disease</subject><subject>Cell interactions</subject><subject>Central nervous system</subject><subject>Electrochemistry</subject><subject>Exo-a-sialidase</subject><subject>Exosomes</subject><subject>Extracellular vesicles</subject><subject>Hypotheses</subject><subject>Immune system</subject><subject>Immunological synapses</subject><subject>Inflammation</subject><subject>Membranes</subject><subject>Microglia</subject><subject>Movement disorders</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neurons</subject><subject>Parkinson's disease</subject><subject>Proteins</subject><subject>Secretions</subject><subject>Stimuli</subject><subject>Synapses</subject><subject>Vesicles</subject><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUk1v1DAQjRCIVqV_gAOKxIVLih3HTnxC1aqFlVqQ-Lpak_Hs1ks2XmxvCz-A_43TXRbKxTOy37yZ8XtF8ZyzM85q_howIo0pojsTyDhT6lFxXIu2qVot-eND3oij4jTGFWOMN0rJun1aHImOCdFqflz8unYY_HJwUF6TdZConPkxAaZqPlraUD7GVL6nbfAjDDlJdz58Kz_S2lsa3Lgsb3PtJ8JAiew9ENZudBYiVaI8j9HjRGvLO5duyosfKQDSMGwHCOVXig4His-KJwsYIp3u40nx5fLi8-xddfXh7Xx2flVho9tU9dj3loNaaNmJlrXIZI2aiQVybYW0qkcGveiokR1O0dYga5Id56iYFOKkmO94rYeV2QS3hvDTeHDm_sKHpYGQppGMEpKg5ZqrftF0oDWvlUbQiChb28vM9WbHtdn2a7KTGAGGB6QPX0Z3Y5b-1mStOtG0KjO82jME_31LMZm1i9PfwEh-G03daZWF0nJq9vI_6MpvQxYko_JkTZ13bDKq3qGypDEGWhym4cxMrjF_XWP2rslFL_7d41DyxyPiN8rlw0w</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Delaveris, Corleone S</creator><creator>Wang, Catherine L</creator><creator>Riley, Nicholas M</creator><creator>Li, Sherry</creator><creator>Kulkarni, Rishikesh U</creator><creator>Bertozzi, Carolyn R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4482-2754</orcidid><orcidid>https://orcid.org/0000-0001-9855-6194</orcidid><orcidid>https://orcid.org/0000-0002-7291-2338</orcidid><orcidid>https://orcid.org/0000-0002-1536-2966</orcidid></search><sort><creationdate>20231122</creationdate><title>Microglia Mediate Contact-Independent Neuronal Network Remodeling via Secreted Neuraminidase-3 Associated with Extracellular Vesicles</title><author>Delaveris, Corleone S ; Wang, Catherine L ; Riley, Nicholas M ; Li, Sherry ; Kulkarni, Rishikesh U ; Bertozzi, Carolyn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Alzheimer's disease</topic><topic>Cell interactions</topic><topic>Central nervous system</topic><topic>Electrochemistry</topic><topic>Exo-a-sialidase</topic><topic>Exosomes</topic><topic>Extracellular vesicles</topic><topic>Hypotheses</topic><topic>Immune system</topic><topic>Immunological synapses</topic><topic>Inflammation</topic><topic>Membranes</topic><topic>Microglia</topic><topic>Movement disorders</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neurons</topic><topic>Parkinson's disease</topic><topic>Proteins</topic><topic>Secretions</topic><topic>Stimuli</topic><topic>Synapses</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delaveris, Corleone S</creatorcontrib><creatorcontrib>Wang, Catherine L</creatorcontrib><creatorcontrib>Riley, Nicholas M</creatorcontrib><creatorcontrib>Li, Sherry</creatorcontrib><creatorcontrib>Kulkarni, Rishikesh U</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delaveris, Corleone S</au><au>Wang, Catherine L</au><au>Riley, Nicholas M</au><au>Li, Sherry</au><au>Kulkarni, Rishikesh U</au><au>Bertozzi, Carolyn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microglia Mediate Contact-Independent Neuronal Network Remodeling via Secreted Neuraminidase-3 Associated with Extracellular Vesicles</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent Sci</addtitle><date>2023-11-22</date><risdate>2023</risdate><volume>9</volume><issue>11</issue><spage>2108</spage><epage>2114</epage><pages>2108-2114</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Neurons communicate with each other through electrochemical transmission at synapses. Microglia, the resident immune cells of the central nervous system, modulate this communication through a variety of contact-dependent and -independent means. Microglial secretion of active sialidase enzymes upon exposure to inflammatory stimuli is one unexplored mechanism of modulation. Recent work from our lab showed that treatment of neurons with bacterial sialidases disrupts neuronal network connectivity. Here, we find that activated microglia secrete neuraminidase-3 (Neu3) associated with fusogenic extracellular vesicles. Furthermore, we show that Neu3 mediates contact-independent disruption of neuronal network synchronicity through neuronal glycocalyx remodeling. We observe that
is transcriptionally upregulated upon exposure to inflammatory stimuli and that a genetic knockout of
abrogates the sialidase activity of inflammatory microglial secretions. Moreover, we demonstrate that Neu3 is associated with a subpopulation of extracellular vesicles, possibly exosomes, that are secreted by microglia upon inflammatory insult. Finally, we demonstrate that Neu3 is necessary and sufficient to both desialylate neurons and decrease neuronal network connectivity. These results implicate Neu3 in remodeling of the glycocalyx leading to aberrant network-level activity of neurons, with implications in neuroinflammatory diseases such as Parkinson's disease and Alzheimer's disease.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38033791</pmid><doi>10.1021/acscentsci.3c01066</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4482-2754</orcidid><orcidid>https://orcid.org/0000-0001-9855-6194</orcidid><orcidid>https://orcid.org/0000-0002-7291-2338</orcidid><orcidid>https://orcid.org/0000-0002-1536-2966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-7943 |
ispartof | ACS central science, 2023-11, Vol.9 (11), p.2108-2114 |
issn | 2374-7943 2374-7951 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_635ea71916bf48a991269ca9ccc57db5 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Acids Alzheimer's disease Cell interactions Central nervous system Electrochemistry Exo-a-sialidase Exosomes Extracellular vesicles Hypotheses Immune system Immunological synapses Inflammation Membranes Microglia Movement disorders Neural networks Neurodegenerative diseases Neurons Parkinson's disease Proteins Secretions Stimuli Synapses Vesicles |
title | Microglia Mediate Contact-Independent Neuronal Network Remodeling via Secreted Neuraminidase-3 Associated with Extracellular Vesicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microglia%20Mediate%20Contact-Independent%20Neuronal%20Network%20Remodeling%20via%20Secreted%20Neuraminidase-3%20Associated%20with%20Extracellular%20Vesicles&rft.jtitle=ACS%20central%20science&rft.au=Delaveris,%20Corleone%20S&rft.date=2023-11-22&rft.volume=9&rft.issue=11&rft.spage=2108&rft.epage=2114&rft.pages=2108-2114&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.3c01066&rft_dat=%3Cproquest_doaj_%3E2912425814%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-bcbbd1a6f9583707c052c903fc19d35d6bc0ab38e458cb38ed2a52e5811c60533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912425814&rft_id=info:pmid/38033791&rfr_iscdi=true |