Loading…

Engineering Interfacial Integrity with Hydrolytic-Resistant, Self-Reinforcing Dentin Adhesive

The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2024-06, Vol.25 (13), p.7061
Main Authors: Demirel, Erhan, Korkmaz, Burak, Chang, Youngwoo, Misra, Anil, Tamerler, Candan, Spencer, Paulette
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize on free-radical polymerization and sol-gel reactions to provide dental adhesives with enhanced properties. The resins contain γ-methacryloxypropyltrimethoxysilane (MPS) as the Si-based compound. This study investigated the properties of methacrylate-based resins containing methacryloxymethyltrimethoxysilane (MMeS) as a short-chain alternative. The degree of conversion (DC), polymerization kinetics, water sorption, mechanical properties, and leachates of MMeS- and MPS-resins with 55 and 30 wt% BisGMA-crosslinker were determined. The formulations were used as model adhesives, and the adhesive/dentin (a/d) interfaces were analyzed using chemometrics-assisted micro-Raman spectroscopy. The properties of the 55 wt% formulations were comparable. In the 30 wt% BisGMA formulations, the MMeS-resin exhibited faster polymerization, lower DC, reduced leachates, and increased storage and loss moduli, glass transition (T ), crosslink density, and heterogeneity. The spectroscopic results indicated a comparable spatial distribution of resin, mineralized, and demineralized dentin across the a/d interfaces. The hydrolytically stable experimental short-chain-silane-monomer dental adhesive provides enhanced mechanical properties through autonomous strengthening and offers a promising strategy for the development of restorative dental materials with extended service life.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms25137061