Loading…
Gas chromatography techniques to evaluate the hydrogen permeation characteristics in rubber: ethylene propylene diene monomer
We established an ex-situ technique for evaluating hydrogen gas permeability by thermal desorption analysis (TDA) gas chromatography (GC) and by self-developed diffusion analysis software. Absorbed hydrogen mass in rubber, related to the GC-peak area, is recorded as a function of elapsed time after...
Saved in:
Published in: | Scientific reports 2021-03, Vol.11 (1), p.4859-4859, Article 4859 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We established an ex-situ technique for evaluating hydrogen gas permeability by thermal desorption analysis (TDA) gas chromatography (GC) and by self-developed diffusion analysis software. Absorbed hydrogen mass in rubber, related to the GC-peak area, is recorded as a function of elapsed time after decompressing the hydrogen under high-pressure. From the charging amount (C
H0
) and diffusivity (D) obtained by the developed diffusion analysis program, the solubility(S) and permeability(P) is evaluated via Henry’s law and P = SD, respectively. The techniques were applied to ethylene propylene diene monomer (EPDM) rubber, sealing material candidates in hydrogen infrastructures. EPDM sample mixed with carbon black fillers showed dual hydrogen diffusion behaviors, whereas EPDM sample without carbon black showed a single hydrogen diffusion behavior. There was no appreciable pressure or size dependence on D, S and P. P are consistent with that measured by different researcher within the expanded uncertainty. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-83692-1 |