Loading…

Gas chromatography techniques to evaluate the hydrogen permeation characteristics in rubber: ethylene propylene diene monomer

We established an ex-situ technique for evaluating hydrogen gas permeability by thermal desorption analysis (TDA) gas chromatography (GC) and by self-developed diffusion analysis software. Absorbed hydrogen mass in rubber, related to the GC-peak area, is recorded as a function of elapsed time after...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-03, Vol.11 (1), p.4859-4859, Article 4859
Main Authors: Jung, Jae Kap, Kim, In Gyoo, Chung, Ki Soo, Baek, Un Bong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We established an ex-situ technique for evaluating hydrogen gas permeability by thermal desorption analysis (TDA) gas chromatography (GC) and by self-developed diffusion analysis software. Absorbed hydrogen mass in rubber, related to the GC-peak area, is recorded as a function of elapsed time after decompressing the hydrogen under high-pressure. From the charging amount (C H0 ) and diffusivity (D) obtained by the developed diffusion analysis program, the solubility(S) and permeability(P) is evaluated via Henry’s law and P = SD, respectively. The techniques were applied to ethylene propylene diene monomer (EPDM) rubber, sealing material candidates in hydrogen infrastructures. EPDM sample mixed with carbon black fillers showed dual hydrogen diffusion behaviors, whereas EPDM sample without carbon black showed a single hydrogen diffusion behavior. There was no appreciable pressure or size dependence on D, S and P. P are consistent with that measured by different researcher within the expanded uncertainty.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83692-1