Loading…

Predicting Landslide Using Machine Learning Techniques

In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging....

Full description

Saved in:
Bibliographic Details
Published in:ITM web of conferences 2024, Vol.65, p.3012
Main Authors: Patel, Mehul, Chavda, Mittal, Patel, Rajesh, Goswami, Ankur, Mevada, Jayesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073
container_end_page
container_issue
container_start_page 3012
container_title ITM web of conferences
container_volume 65
creator Patel, Mehul
Chavda, Mittal
Patel, Rajesh
Goswami, Ankur
Mevada, Jayesh
description In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.
doi_str_mv 10.1051/itmconf/20246503012
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63cbcc8620a54852a74ed03b9b413318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63cbcc8620a54852a74ed03b9b413318</doaj_id><sourcerecordid>3082663693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqJ8QS9IPae1d511cqxQH0hU7QHOll8BI0ioEw79-yYFVZxmdzSanR3G7gV_FDwXT7Hbu6aunoCDpJwjF3DFRgBKZMBLdX0x37JJ22455yIvSACNGH2l4KPrYr2eLkzt2130Ybpqh_3DuE2sw3QRTKoHYhncpo7fx9DesZvK7NowOeOYrV5flrP3bPH5Np89LzInCoTMWiIDSrnco-IkgwJHQVjkPbpCgrTWuzzYConAgzRloJ5EIwUUXOGYzU--vjFbfUhxb9KPbkzUf0ST1tqkLrpd0ITOOlcQcJPLIgejZPAcbWmlQOzjjNnDyeuQmuGHTm-bY6r7-Bp5AURIJfYqPKlcato2her_quB66Fuf-9YXfeMvFOtyNw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082663693</pqid></control><display><type>article</type><title>Predicting Landslide Using Machine Learning Techniques</title><source>Publicly Available Content (ProQuest)</source><creator>Patel, Mehul ; Chavda, Mittal ; Patel, Rajesh ; Goswami, Ankur ; Mevada, Jayesh</creator><contributor>Mohanty, B. ; Shah, H.N. ; Patel, M.M.</contributor><creatorcontrib>Patel, Mehul ; Chavda, Mittal ; Patel, Rajesh ; Goswami, Ankur ; Mevada, Jayesh ; Mohanty, B. ; Shah, H.N. ; Patel, M.M.</creatorcontrib><description>In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.</description><identifier>ISSN: 2271-2097</identifier><identifier>ISSN: 2431-7578</identifier><identifier>EISSN: 2271-2097</identifier><identifier>DOI: 10.1051/itmconf/20246503012</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Algorithms ; Bagging ; Environmental management ; Geological hazards ; Hazard assessment ; landslide ; Landslides ; Landslides &amp; mudslides ; Machine learning ; Mountainous areas ; remote sensing ; Risk management ; Statistical methods</subject><ispartof>ITM web of conferences, 2024, Vol.65, p.3012</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3082663693?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4021,23928,23929,25138,25751,27921,27922,27923,37010,44588</link.rule.ids></links><search><contributor>Mohanty, B.</contributor><contributor>Shah, H.N.</contributor><contributor>Patel, M.M.</contributor><creatorcontrib>Patel, Mehul</creatorcontrib><creatorcontrib>Chavda, Mittal</creatorcontrib><creatorcontrib>Patel, Rajesh</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><creatorcontrib>Mevada, Jayesh</creatorcontrib><title>Predicting Landslide Using Machine Learning Techniques</title><title>ITM web of conferences</title><description>In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.</description><subject>Algorithms</subject><subject>Bagging</subject><subject>Environmental management</subject><subject>Geological hazards</subject><subject>Hazard assessment</subject><subject>landslide</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Machine learning</subject><subject>Mountainous areas</subject><subject>remote sensing</subject><subject>Risk management</subject><subject>Statistical methods</subject><issn>2271-2097</issn><issn>2431-7578</issn><issn>2271-2097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtuwjAQtKpWKqJ8QS9IPae1d511cqxQH0hU7QHOll8BI0ioEw79-yYFVZxmdzSanR3G7gV_FDwXT7Hbu6aunoCDpJwjF3DFRgBKZMBLdX0x37JJ22455yIvSACNGH2l4KPrYr2eLkzt2130Ybpqh_3DuE2sw3QRTKoHYhncpo7fx9DesZvK7NowOeOYrV5flrP3bPH5Np89LzInCoTMWiIDSrnco-IkgwJHQVjkPbpCgrTWuzzYConAgzRloJ5EIwUUXOGYzU--vjFbfUhxb9KPbkzUf0ST1tqkLrpd0ITOOlcQcJPLIgejZPAcbWmlQOzjjNnDyeuQmuGHTm-bY6r7-Bp5AURIJfYqPKlcato2her_quB66Fuf-9YXfeMvFOtyNw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Patel, Mehul</creator><creator>Chavda, Mittal</creator><creator>Patel, Rajesh</creator><creator>Goswami, Ankur</creator><creator>Mevada, Jayesh</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Predicting Landslide Using Machine Learning Techniques</title><author>Patel, Mehul ; Chavda, Mittal ; Patel, Rajesh ; Goswami, Ankur ; Mevada, Jayesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bagging</topic><topic>Environmental management</topic><topic>Geological hazards</topic><topic>Hazard assessment</topic><topic>landslide</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Machine learning</topic><topic>Mountainous areas</topic><topic>remote sensing</topic><topic>Risk management</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Mehul</creatorcontrib><creatorcontrib>Chavda, Mittal</creatorcontrib><creatorcontrib>Patel, Rajesh</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><creatorcontrib>Mevada, Jayesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>ITM web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Mehul</au><au>Chavda, Mittal</au><au>Patel, Rajesh</au><au>Goswami, Ankur</au><au>Mevada, Jayesh</au><au>Mohanty, B.</au><au>Shah, H.N.</au><au>Patel, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Landslide Using Machine Learning Techniques</atitle><jtitle>ITM web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>65</volume><spage>3012</spage><pages>3012-</pages><issn>2271-2097</issn><issn>2431-7578</issn><eissn>2271-2097</eissn><abstract>In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/itmconf/20246503012</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2271-2097
ispartof ITM web of conferences, 2024, Vol.65, p.3012
issn 2271-2097
2431-7578
2271-2097
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_63cbcc8620a54852a74ed03b9b413318
source Publicly Available Content (ProQuest)
subjects Algorithms
Bagging
Environmental management
Geological hazards
Hazard assessment
landslide
Landslides
Landslides & mudslides
Machine learning
Mountainous areas
remote sensing
Risk management
Statistical methods
title Predicting Landslide Using Machine Learning Techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Landslide%20Using%20Machine%20Learning%20Techniques&rft.jtitle=ITM%20web%20of%20conferences&rft.au=Patel,%20Mehul&rft.date=2024&rft.volume=65&rft.spage=3012&rft.pages=3012-&rft.issn=2271-2097&rft.eissn=2271-2097&rft_id=info:doi/10.1051/itmconf/20246503012&rft_dat=%3Cproquest_doaj_%3E3082663693%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082663693&rft_id=info:pmid/&rfr_iscdi=true