Loading…
Predicting Landslide Using Machine Learning Techniques
In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging....
Saved in:
Published in: | ITM web of conferences 2024, Vol.65, p.3012 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073 |
container_end_page | |
container_issue | |
container_start_page | 3012 |
container_title | ITM web of conferences |
container_volume | 65 |
creator | Patel, Mehul Chavda, Mittal Patel, Rajesh Goswami, Ankur Mevada, Jayesh |
description | In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide. |
doi_str_mv | 10.1051/itmconf/20246503012 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63cbcc8620a54852a74ed03b9b413318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63cbcc8620a54852a74ed03b9b413318</doaj_id><sourcerecordid>3082663693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqJ8QS9IPae1d511cqxQH0hU7QHOll8BI0ioEw79-yYFVZxmdzSanR3G7gV_FDwXT7Hbu6aunoCDpJwjF3DFRgBKZMBLdX0x37JJ22455yIvSACNGH2l4KPrYr2eLkzt2130Ybpqh_3DuE2sw3QRTKoHYhncpo7fx9DesZvK7NowOeOYrV5flrP3bPH5Np89LzInCoTMWiIDSrnco-IkgwJHQVjkPbpCgrTWuzzYConAgzRloJ5EIwUUXOGYzU--vjFbfUhxb9KPbkzUf0ST1tqkLrpd0ITOOlcQcJPLIgejZPAcbWmlQOzjjNnDyeuQmuGHTm-bY6r7-Bp5AURIJfYqPKlcato2her_quB66Fuf-9YXfeMvFOtyNw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082663693</pqid></control><display><type>article</type><title>Predicting Landslide Using Machine Learning Techniques</title><source>Publicly Available Content (ProQuest)</source><creator>Patel, Mehul ; Chavda, Mittal ; Patel, Rajesh ; Goswami, Ankur ; Mevada, Jayesh</creator><contributor>Mohanty, B. ; Shah, H.N. ; Patel, M.M.</contributor><creatorcontrib>Patel, Mehul ; Chavda, Mittal ; Patel, Rajesh ; Goswami, Ankur ; Mevada, Jayesh ; Mohanty, B. ; Shah, H.N. ; Patel, M.M.</creatorcontrib><description>In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.</description><identifier>ISSN: 2271-2097</identifier><identifier>ISSN: 2431-7578</identifier><identifier>EISSN: 2271-2097</identifier><identifier>DOI: 10.1051/itmconf/20246503012</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Algorithms ; Bagging ; Environmental management ; Geological hazards ; Hazard assessment ; landslide ; Landslides ; Landslides & mudslides ; Machine learning ; Mountainous areas ; remote sensing ; Risk management ; Statistical methods</subject><ispartof>ITM web of conferences, 2024, Vol.65, p.3012</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3082663693?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,4021,23928,23929,25138,25751,27921,27922,27923,37010,44588</link.rule.ids></links><search><contributor>Mohanty, B.</contributor><contributor>Shah, H.N.</contributor><contributor>Patel, M.M.</contributor><creatorcontrib>Patel, Mehul</creatorcontrib><creatorcontrib>Chavda, Mittal</creatorcontrib><creatorcontrib>Patel, Rajesh</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><creatorcontrib>Mevada, Jayesh</creatorcontrib><title>Predicting Landslide Using Machine Learning Techniques</title><title>ITM web of conferences</title><description>In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.</description><subject>Algorithms</subject><subject>Bagging</subject><subject>Environmental management</subject><subject>Geological hazards</subject><subject>Hazard assessment</subject><subject>landslide</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Machine learning</subject><subject>Mountainous areas</subject><subject>remote sensing</subject><subject>Risk management</subject><subject>Statistical methods</subject><issn>2271-2097</issn><issn>2431-7578</issn><issn>2271-2097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtuwjAQtKpWKqJ8QS9IPae1d511cqxQH0hU7QHOll8BI0ioEw79-yYFVZxmdzSanR3G7gV_FDwXT7Hbu6aunoCDpJwjF3DFRgBKZMBLdX0x37JJ22455yIvSACNGH2l4KPrYr2eLkzt2130Ybpqh_3DuE2sw3QRTKoHYhncpo7fx9DesZvK7NowOeOYrV5flrP3bPH5Np89LzInCoTMWiIDSrnco-IkgwJHQVjkPbpCgrTWuzzYConAgzRloJ5EIwUUXOGYzU--vjFbfUhxb9KPbkzUf0ST1tqkLrpd0ITOOlcQcJPLIgejZPAcbWmlQOzjjNnDyeuQmuGHTm-bY6r7-Bp5AURIJfYqPKlcato2her_quB66Fuf-9YXfeMvFOtyNw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Patel, Mehul</creator><creator>Chavda, Mittal</creator><creator>Patel, Rajesh</creator><creator>Goswami, Ankur</creator><creator>Mevada, Jayesh</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2024</creationdate><title>Predicting Landslide Using Machine Learning Techniques</title><author>Patel, Mehul ; Chavda, Mittal ; Patel, Rajesh ; Goswami, Ankur ; Mevada, Jayesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bagging</topic><topic>Environmental management</topic><topic>Geological hazards</topic><topic>Hazard assessment</topic><topic>landslide</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Machine learning</topic><topic>Mountainous areas</topic><topic>remote sensing</topic><topic>Risk management</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Mehul</creatorcontrib><creatorcontrib>Chavda, Mittal</creatorcontrib><creatorcontrib>Patel, Rajesh</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><creatorcontrib>Mevada, Jayesh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>ITM web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Mehul</au><au>Chavda, Mittal</au><au>Patel, Rajesh</au><au>Goswami, Ankur</au><au>Mevada, Jayesh</au><au>Mohanty, B.</au><au>Shah, H.N.</au><au>Patel, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Landslide Using Machine Learning Techniques</atitle><jtitle>ITM web of conferences</jtitle><date>2024</date><risdate>2024</risdate><volume>65</volume><spage>3012</spage><pages>3012-</pages><issn>2271-2097</issn><issn>2431-7578</issn><eissn>2271-2097</eissn><abstract>In mountainous areas prone to landslides, it’s crucial to map out where these hazardous events are likely to occur to mitigate risks effectively. This study focuses employing an integrated approach to assess landslide susceptibility using Random Forest (RF), Stacking, Vote, AdaBoostM1, and Bagging. 13 factors influencing landslide occurrence are identified for modeling purposes. To evaluate and compare the models’ performance, multiple statistical methods are employed. The analysis highlights the effectiveness of employing machine learning models, Random Forest (RF), Stacking, Bagging, and Vote methods. The results demonstrate the efficiency of the models in accurately predicting landslide susceptibility. The study suggests that similar hybrid models can be effectively utilized in other sensitive regions with comparable geo-environmental conditions for landslide susceptibility studies. By integrating various techniques and leveraging ensemble algorithms, these models offer improved accuracy and reliability in assessing landslide hazards. This comprehensive approach provides valuable insights for disaster management and risk reduction efforts in landslideprone areas worldwide.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/itmconf/20246503012</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2271-2097 |
ispartof | ITM web of conferences, 2024, Vol.65, p.3012 |
issn | 2271-2097 2431-7578 2271-2097 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_63cbcc8620a54852a74ed03b9b413318 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Bagging Environmental management Geological hazards Hazard assessment landslide Landslides Landslides & mudslides Machine learning Mountainous areas remote sensing Risk management Statistical methods |
title | Predicting Landslide Using Machine Learning Techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Landslide%20Using%20Machine%20Learning%20Techniques&rft.jtitle=ITM%20web%20of%20conferences&rft.au=Patel,%20Mehul&rft.date=2024&rft.volume=65&rft.spage=3012&rft.pages=3012-&rft.issn=2271-2097&rft.eissn=2271-2097&rft_id=info:doi/10.1051/itmconf/20246503012&rft_dat=%3Cproquest_doaj_%3E3082663693%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1832-bb66a277c5d37064e72c6e1b302c6c8424bbdc5ebf3662d24a9e624b3a4128073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082663693&rft_id=info:pmid/&rfr_iscdi=true |