Loading…

Recovering Heat Source from Fourth-Order Inverse Problems by Weighted Gradient Collocation

The weighted gradient reproducing kernel collocation method is introduced to recover the heat source described by Poisson’s equation. As it is commonly known that there is no unique solution to the inverse heat source problem, the weak solution based on a priori assumptions is considered herein. In...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-01, Vol.10 (2), p.241
Main Authors: Yang, Judy P., Li, Hsiang-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873
cites cdi_FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873
container_end_page
container_issue 2
container_start_page 241
container_title Mathematics (Basel)
container_volume 10
creator Yang, Judy P.
Li, Hsiang-Ming
description The weighted gradient reproducing kernel collocation method is introduced to recover the heat source described by Poisson’s equation. As it is commonly known that there is no unique solution to the inverse heat source problem, the weak solution based on a priori assumptions is considered herein. In view of the fourth-order partial differential equation (PDE) in the mathematical model, the high-order gradient reproducing kernel approximation is introduced to efficiently untangle the problem without calculating the high-order derivatives of reproducing kernel shape functions. The weights of the weighted collocation method for high-order inverse analysis are first determined. In the benchmark analysis, the unclear illustration in the literature is clarified, and the correct interpretation of numerical results is given particularly. Two mathematical formulations with four examples are provided to demonstrate the viability of the method, including the extreme cases of the limited accessible boundary.
doi_str_mv 10.3390/math10020241
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63ec86f51e7b4bf7a5e1e923c7cbeb4e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63ec86f51e7b4bf7a5e1e923c7cbeb4e</doaj_id><sourcerecordid>2621348106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhoMoKLU3f0DAq6v5apI9SlFbKFRUELyEJDtpt-xuNBsF_73RijiXGWZenhnmReiMkkvOa3LV27ylhDDCBD1AJ4wxVakyOPxXH6PpOO5IiZpyLeoT9PIAPn5AaocNXoDN-DG-Jw84pNjj21LnbbVODSS8HIpsBHyfouugH7H7xM_QbrYZGnyXbNPCkPE8dl30NrdxOEVHwXYjTH_zBD3d3jzNF9VqfbecX68qz6XKlQTvgTsqBVEiENr4wJl1WnmutZCaUxJ4HXwtiJjJmjfCzoAEJ7UOXCs-Qcs9tol2Z15T29v0aaJtzU8jpo2xKbe-AyM5eC3DjIJywgVVQBRqxr3yDpyAwjrfs15TfHuHMZtdecFQrjdMMsqFpkQW1cVe5VMcxwThbysl5tsL898L_gVFC3w8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621348106</pqid></control><display><type>article</type><title>Recovering Heat Source from Fourth-Order Inverse Problems by Weighted Gradient Collocation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yang, Judy P. ; Li, Hsiang-Ming</creator><creatorcontrib>Yang, Judy P. ; Li, Hsiang-Ming</creatorcontrib><description>The weighted gradient reproducing kernel collocation method is introduced to recover the heat source described by Poisson’s equation. As it is commonly known that there is no unique solution to the inverse heat source problem, the weak solution based on a priori assumptions is considered herein. In view of the fourth-order partial differential equation (PDE) in the mathematical model, the high-order gradient reproducing kernel approximation is introduced to efficiently untangle the problem without calculating the high-order derivatives of reproducing kernel shape functions. The weights of the weighted collocation method for high-order inverse analysis are first determined. In the benchmark analysis, the unclear illustration in the literature is clarified, and the correct interpretation of numerical results is given particularly. Two mathematical formulations with four examples are provided to demonstrate the viability of the method, including the extreme cases of the limited accessible boundary.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10020241</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; Boundary conditions ; Collocation methods ; fourth-order PDE ; gradient approximation ; heat source ; Inverse problems ; Kernels ; Mathematical analysis ; Mathematics ; Numerical analysis ; Partial differential equations ; Poisson equation ; Regularization methods ; reproducing kernel approximation ; Shape functions ; weighted collocation method</subject><ispartof>Mathematics (Basel), 2022-01, Vol.10 (2), p.241</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873</citedby><cites>FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873</cites><orcidid>0000-0002-3792-2821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2621348106/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2621348106?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yang, Judy P.</creatorcontrib><creatorcontrib>Li, Hsiang-Ming</creatorcontrib><title>Recovering Heat Source from Fourth-Order Inverse Problems by Weighted Gradient Collocation</title><title>Mathematics (Basel)</title><description>The weighted gradient reproducing kernel collocation method is introduced to recover the heat source described by Poisson’s equation. As it is commonly known that there is no unique solution to the inverse heat source problem, the weak solution based on a priori assumptions is considered herein. In view of the fourth-order partial differential equation (PDE) in the mathematical model, the high-order gradient reproducing kernel approximation is introduced to efficiently untangle the problem without calculating the high-order derivatives of reproducing kernel shape functions. The weights of the weighted collocation method for high-order inverse analysis are first determined. In the benchmark analysis, the unclear illustration in the literature is clarified, and the correct interpretation of numerical results is given particularly. Two mathematical formulations with four examples are provided to demonstrate the viability of the method, including the extreme cases of the limited accessible boundary.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Collocation methods</subject><subject>fourth-order PDE</subject><subject>gradient approximation</subject><subject>heat source</subject><subject>Inverse problems</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Poisson equation</subject><subject>Regularization methods</subject><subject>reproducing kernel approximation</subject><subject>Shape functions</subject><subject>weighted collocation method</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhoMoKLU3f0DAq6v5apI9SlFbKFRUELyEJDtpt-xuNBsF_73RijiXGWZenhnmReiMkkvOa3LV27ylhDDCBD1AJ4wxVakyOPxXH6PpOO5IiZpyLeoT9PIAPn5AaocNXoDN-DG-Jw84pNjj21LnbbVODSS8HIpsBHyfouugH7H7xM_QbrYZGnyXbNPCkPE8dl30NrdxOEVHwXYjTH_zBD3d3jzNF9VqfbecX68qz6XKlQTvgTsqBVEiENr4wJl1WnmutZCaUxJ4HXwtiJjJmjfCzoAEJ7UOXCs-Qcs9tol2Z15T29v0aaJtzU8jpo2xKbe-AyM5eC3DjIJywgVVQBRqxr3yDpyAwjrfs15TfHuHMZtdecFQrjdMMsqFpkQW1cVe5VMcxwThbysl5tsL898L_gVFC3w8</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yang, Judy P.</creator><creator>Li, Hsiang-Ming</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3792-2821</orcidid></search><sort><creationdate>20220101</creationdate><title>Recovering Heat Source from Fourth-Order Inverse Problems by Weighted Gradient Collocation</title><author>Yang, Judy P. ; Li, Hsiang-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Collocation methods</topic><topic>fourth-order PDE</topic><topic>gradient approximation</topic><topic>heat source</topic><topic>Inverse problems</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Poisson equation</topic><topic>Regularization methods</topic><topic>reproducing kernel approximation</topic><topic>Shape functions</topic><topic>weighted collocation method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Judy P.</creatorcontrib><creatorcontrib>Li, Hsiang-Ming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Judy P.</au><au>Li, Hsiang-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering Heat Source from Fourth-Order Inverse Problems by Weighted Gradient Collocation</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>241</spage><pages>241-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The weighted gradient reproducing kernel collocation method is introduced to recover the heat source described by Poisson’s equation. As it is commonly known that there is no unique solution to the inverse heat source problem, the weak solution based on a priori assumptions is considered herein. In view of the fourth-order partial differential equation (PDE) in the mathematical model, the high-order gradient reproducing kernel approximation is introduced to efficiently untangle the problem without calculating the high-order derivatives of reproducing kernel shape functions. The weights of the weighted collocation method for high-order inverse analysis are first determined. In the benchmark analysis, the unclear illustration in the literature is clarified, and the correct interpretation of numerical results is given particularly. Two mathematical formulations with four examples are provided to demonstrate the viability of the method, including the extreme cases of the limited accessible boundary.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10020241</doi><orcidid>https://orcid.org/0000-0002-3792-2821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-01, Vol.10 (2), p.241
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_63ec86f51e7b4bf7a5e1e923c7cbeb4e
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Approximation
Boundary conditions
Collocation methods
fourth-order PDE
gradient approximation
heat source
Inverse problems
Kernels
Mathematical analysis
Mathematics
Numerical analysis
Partial differential equations
Poisson equation
Regularization methods
reproducing kernel approximation
Shape functions
weighted collocation method
title Recovering Heat Source from Fourth-Order Inverse Problems by Weighted Gradient Collocation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20Heat%20Source%20from%20Fourth-Order%20Inverse%20Problems%20by%20Weighted%20Gradient%20Collocation&rft.jtitle=Mathematics%20(Basel)&rft.au=Yang,%20Judy%20P.&rft.date=2022-01-01&rft.volume=10&rft.issue=2&rft.spage=241&rft.pages=241-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10020241&rft_dat=%3Cproquest_doaj_%3E2621348106%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-6ecce3b164074f01dcf32ab87c388468310f39fc94045693d4a5e0fb688f3873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2621348106&rft_id=info:pmid/&rfr_iscdi=true