Loading…

QuIM-RAG: Advancing Retrieval-Augmented Generation With Inverted Question Matching for Enhanced QA Performance

This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems to improve Question Answering (QA) tasks from a target corpus. Large Language Models (LLMs) have revolutionized the analyzing and generation of human-like text. These models rely on pre-trained data and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024-01, Vol.12, p.185401-185410
Main Authors: Saha, Binita, Saha, Utsha, Malik, Muhammad Zubair
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 185410
container_issue
container_start_page 185401
container_title IEEE access
container_volume 12
creator Saha, Binita
Saha, Utsha
Malik, Muhammad Zubair
description This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems to improve Question Answering (QA) tasks from a target corpus. Large Language Models (LLMs) have revolutionized the analyzing and generation of human-like text. These models rely on pre-trained data and lack real-time updates unless integrated with live data tools. RAG enhances LLMs by integrating online resources and databases to generate contextually appropriate responses. However, traditional RAG still encounters challenges like information dilution and hallucinations when handling vast amounts of data. Our approach addresses these challenges by converting corpora into a domain-specific dataset and RAG architecture is constructed to generate responses from the target document. We introduce QuIM-RAG (Question-to-question Inverted Index Matching), a novel approach for the retrieval mechanism in our system. This strategy generates potential questions from document chunks and matches these with user queries to identify the most relevant text chunks for generating accurate answers. We have implemented our RAG system on top of the open-source Meta-LLaMA3-8B-instruct model by Meta Inc. that is available on Hugging Face. We constructed a custom corpus of 500+ pages from a high-traffic website accessed thousands of times daily for answering complex questions, along with manually prepared ground truth QA for evaluation. We compared our approach with traditional RAG models using BERT-Score and RAGAS, state-of-the-art metrics for evaluating LLM applications. Our evaluation demonstrates that our approach outperforms traditional RAG architectures on both metrics.
doi_str_mv 10.1109/ACCESS.2024.3513155
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_63fe724debbc43a1bb1548aae0222c98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_63fe724debbc43a1bb1548aae0222c98</doaj_id><sourcerecordid>3144175492</sourcerecordid><originalsourceid>FETCH-LOGICAL-d942-b2b2959a5c72555fbc844bd24f8f03c80c5b130d26507942169895594066a9003</originalsourceid><addsrcrecordid>eNotj0trwzAQhEWh0JDmF_Ri6NmpXmtbvRmTpoaENg_o0UiynDgkcirbgfz7ykn3suw3zLCD0AvBU0KweEuzbLbZTCmmfMqAMALwgEaURCJkwKInNGnbA_aTeATxCNlVny_DdTp_D9LyIq2u7S5Ym87V5iKPYdrvTsZ2pgzmxhonu7qxwU_d7YPcXowbhFVv2hteyk7vB3vVuGBm9z5skNPg2ziPTsP9jB4reWzN5H-P0fZjts0-w8XXPM_SRVgKTkNFFRUgJOiYAkCldMK5KimvkgoznWANijBc0ghw7A2-SyIABMdRJAXGbIzye2zZyENxdvVJumvRyLq4gcbtCum6Wh9NEbHKxJSXRinNmSRKEeCJlAZTSrVIfNbrPevsmt-ha3Foemf99wUjnJMYuKDsD8tVceo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175492</pqid></control><display><type>article</type><title>QuIM-RAG: Advancing Retrieval-Augmented Generation With Inverted Question Matching for Enhanced QA Performance</title><source>IEEE Open Access Journals</source><creator>Saha, Binita ; Saha, Utsha ; Malik, Muhammad Zubair</creator><creatorcontrib>Saha, Binita ; Saha, Utsha ; Malik, Muhammad Zubair</creatorcontrib><description>This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems to improve Question Answering (QA) tasks from a target corpus. Large Language Models (LLMs) have revolutionized the analyzing and generation of human-like text. These models rely on pre-trained data and lack real-time updates unless integrated with live data tools. RAG enhances LLMs by integrating online resources and databases to generate contextually appropriate responses. However, traditional RAG still encounters challenges like information dilution and hallucinations when handling vast amounts of data. Our approach addresses these challenges by converting corpora into a domain-specific dataset and RAG architecture is constructed to generate responses from the target document. We introduce QuIM-RAG (Question-to-question Inverted Index Matching), a novel approach for the retrieval mechanism in our system. This strategy generates potential questions from document chunks and matches these with user queries to identify the most relevant text chunks for generating accurate answers. We have implemented our RAG system on top of the open-source Meta-LLaMA3-8B-instruct model by Meta Inc. that is available on Hugging Face. We constructed a custom corpus of 500+ pages from a high-traffic website accessed thousands of times daily for answering complex questions, along with manually prepared ground truth QA for evaluation. We compared our approach with traditional RAG models using BERT-Score and RAGAS, state-of-the-art metrics for evaluating LLM applications. Our evaluation demonstrates that our approach outperforms traditional RAG architectures on both metrics.</description><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3513155</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>ChatGPT ; Dilution ; Documents ; GPT-3.5-turbo ; Internet resources ; Large language models ; Large language models (LLMs) ; Matching ; Meta-LLaMA3-8B-instruct ; question answering (QA) ; Questions ; Real time ; Retrieval ; retrieval-augmented generation (RAG)</subject><ispartof>IEEE access, 2024-01, Vol.12, p.185401-185410</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0006-8577-5594 ; 0000-0003-2567-5170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Saha, Binita</creatorcontrib><creatorcontrib>Saha, Utsha</creatorcontrib><creatorcontrib>Malik, Muhammad Zubair</creatorcontrib><title>QuIM-RAG: Advancing Retrieval-Augmented Generation With Inverted Question Matching for Enhanced QA Performance</title><title>IEEE access</title><description>This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems to improve Question Answering (QA) tasks from a target corpus. Large Language Models (LLMs) have revolutionized the analyzing and generation of human-like text. These models rely on pre-trained data and lack real-time updates unless integrated with live data tools. RAG enhances LLMs by integrating online resources and databases to generate contextually appropriate responses. However, traditional RAG still encounters challenges like information dilution and hallucinations when handling vast amounts of data. Our approach addresses these challenges by converting corpora into a domain-specific dataset and RAG architecture is constructed to generate responses from the target document. We introduce QuIM-RAG (Question-to-question Inverted Index Matching), a novel approach for the retrieval mechanism in our system. This strategy generates potential questions from document chunks and matches these with user queries to identify the most relevant text chunks for generating accurate answers. We have implemented our RAG system on top of the open-source Meta-LLaMA3-8B-instruct model by Meta Inc. that is available on Hugging Face. We constructed a custom corpus of 500+ pages from a high-traffic website accessed thousands of times daily for answering complex questions, along with manually prepared ground truth QA for evaluation. We compared our approach with traditional RAG models using BERT-Score and RAGAS, state-of-the-art metrics for evaluating LLM applications. Our evaluation demonstrates that our approach outperforms traditional RAG architectures on both metrics.</description><subject>ChatGPT</subject><subject>Dilution</subject><subject>Documents</subject><subject>GPT-3.5-turbo</subject><subject>Internet resources</subject><subject>Large language models</subject><subject>Large language models (LLMs)</subject><subject>Matching</subject><subject>Meta-LLaMA3-8B-instruct</subject><subject>question answering (QA)</subject><subject>Questions</subject><subject>Real time</subject><subject>Retrieval</subject><subject>retrieval-augmented generation (RAG)</subject><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotj0trwzAQhEWh0JDmF_Ri6NmpXmtbvRmTpoaENg_o0UiynDgkcirbgfz7ykn3suw3zLCD0AvBU0KweEuzbLbZTCmmfMqAMALwgEaURCJkwKInNGnbA_aTeATxCNlVny_DdTp_D9LyIq2u7S5Ym87V5iKPYdrvTsZ2pgzmxhonu7qxwU_d7YPcXowbhFVv2hteyk7vB3vVuGBm9z5skNPg2ziPTsP9jB4reWzN5H-P0fZjts0-w8XXPM_SRVgKTkNFFRUgJOiYAkCldMK5KimvkgoznWANijBc0ghw7A2-SyIABMdRJAXGbIzye2zZyENxdvVJumvRyLq4gcbtCum6Wh9NEbHKxJSXRinNmSRKEeCJlAZTSrVIfNbrPevsmt-ha3Foemf99wUjnJMYuKDsD8tVceo</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Saha, Binita</creator><creator>Saha, Utsha</creator><creator>Malik, Muhammad Zubair</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-8577-5594</orcidid><orcidid>https://orcid.org/0000-0003-2567-5170</orcidid></search><sort><creationdate>20240101</creationdate><title>QuIM-RAG: Advancing Retrieval-Augmented Generation With Inverted Question Matching for Enhanced QA Performance</title><author>Saha, Binita ; Saha, Utsha ; Malik, Muhammad Zubair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d942-b2b2959a5c72555fbc844bd24f8f03c80c5b130d26507942169895594066a9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ChatGPT</topic><topic>Dilution</topic><topic>Documents</topic><topic>GPT-3.5-turbo</topic><topic>Internet resources</topic><topic>Large language models</topic><topic>Large language models (LLMs)</topic><topic>Matching</topic><topic>Meta-LLaMA3-8B-instruct</topic><topic>question answering (QA)</topic><topic>Questions</topic><topic>Real time</topic><topic>Retrieval</topic><topic>retrieval-augmented generation (RAG)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Binita</creatorcontrib><creatorcontrib>Saha, Utsha</creatorcontrib><creatorcontrib>Malik, Muhammad Zubair</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Binita</au><au>Saha, Utsha</au><au>Malik, Muhammad Zubair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QuIM-RAG: Advancing Retrieval-Augmented Generation With Inverted Question Matching for Enhanced QA Performance</atitle><jtitle>IEEE access</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><spage>185401</spage><epage>185410</epage><pages>185401-185410</pages><eissn>2169-3536</eissn><abstract>This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems to improve Question Answering (QA) tasks from a target corpus. Large Language Models (LLMs) have revolutionized the analyzing and generation of human-like text. These models rely on pre-trained data and lack real-time updates unless integrated with live data tools. RAG enhances LLMs by integrating online resources and databases to generate contextually appropriate responses. However, traditional RAG still encounters challenges like information dilution and hallucinations when handling vast amounts of data. Our approach addresses these challenges by converting corpora into a domain-specific dataset and RAG architecture is constructed to generate responses from the target document. We introduce QuIM-RAG (Question-to-question Inverted Index Matching), a novel approach for the retrieval mechanism in our system. This strategy generates potential questions from document chunks and matches these with user queries to identify the most relevant text chunks for generating accurate answers. We have implemented our RAG system on top of the open-source Meta-LLaMA3-8B-instruct model by Meta Inc. that is available on Hugging Face. We constructed a custom corpus of 500+ pages from a high-traffic website accessed thousands of times daily for answering complex questions, along with manually prepared ground truth QA for evaluation. We compared our approach with traditional RAG models using BERT-Score and RAGAS, state-of-the-art metrics for evaluating LLM applications. Our evaluation demonstrates that our approach outperforms traditional RAG architectures on both metrics.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/ACCESS.2024.3513155</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0006-8577-5594</orcidid><orcidid>https://orcid.org/0000-0003-2567-5170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2169-3536
ispartof IEEE access, 2024-01, Vol.12, p.185401-185410
issn 2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_63fe724debbc43a1bb1548aae0222c98
source IEEE Open Access Journals
subjects ChatGPT
Dilution
Documents
GPT-3.5-turbo
Internet resources
Large language models
Large language models (LLMs)
Matching
Meta-LLaMA3-8B-instruct
question answering (QA)
Questions
Real time
Retrieval
retrieval-augmented generation (RAG)
title QuIM-RAG: Advancing Retrieval-Augmented Generation With Inverted Question Matching for Enhanced QA Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QuIM-RAG:%20Advancing%20Retrieval-Augmented%20Generation%20With%20Inverted%20Question%20Matching%20for%20Enhanced%20QA%20Performance&rft.jtitle=IEEE%20access&rft.au=Saha,%20Binita&rft.date=2024-01-01&rft.volume=12&rft.spage=185401&rft.epage=185410&rft.pages=185401-185410&rft.eissn=2169-3536&rft_id=info:doi/10.1109/ACCESS.2024.3513155&rft_dat=%3Cproquest_doaj_%3E3144175492%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d942-b2b2959a5c72555fbc844bd24f8f03c80c5b130d26507942169895594066a9003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3144175492&rft_id=info:pmid/&rfr_iscdi=true