Loading…

Improve Pasture or Feed Grain? Greenhouse Gas Emissions, Profitability, and Resource Use for Nelore Beef Cattle in Brazil’s Cerrado and Amazon Biomes

Economic development, international food and feed demand, and government policies have converted Brazil’s natural ecosystems into agricultural land. The Integrated Farm System Model (IFSM) was evaluated using production, economic, and weather data collected on two cooperating farms in the Legal Amaz...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2020-08, Vol.10 (8), p.1386
Main Authors: Molossi, Luana, Hoshide, Aaron Kinyu, Pedrosa, Lorena Machado, Oliveira, André Soares de, Abreu, Daniel Carneiro de
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Economic development, international food and feed demand, and government policies have converted Brazil’s natural ecosystems into agricultural land. The Integrated Farm System Model (IFSM) was evaluated using production, economic, and weather data collected on two cooperating farms in the Legal Amazon and Cerrado biomes in the Midwest state of Mato Grosso, Brazil. Three sustainable agricultural intensification strategies, namely grain supplementation, pasture re-seeding, and pasture fertilization were simulated in IFSM with double the beef cattle stocking density compared to extensive grazing. Livestock dry matter consumption simulated in IFSM was similar for pasture grazing estimates and actual feed consumed by beef cattle on the two collaborating farms. Grain supplementation best balanced beef production and profitability with lower carbon footprint compared to extensive grazing, followed by pasture fertilization and pasture re-seeding. However, pasture re-seeding and fertilization had greater use of water and energy and more nitrogen losses. Human edible livestock feed use was greatest for grain supplementation compared to other modeled systems. While grain supplementation appears more favorable economically and environmentally, greater use of human edible livestock feed may compete with future human food needs. Pasture intensification had greater human edible feed conversion efficiency, but its greater natural resource use may be challenging.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani10081386