Loading…
Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002
India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomal...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2018-02, Vol.10 (2), p.244 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43 |
container_end_page | |
container_issue | 2 |
container_start_page | 244 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 10 |
creator | Zampieri, Matteo Carmona Garcia, Gema Dentener, Frank Gumma, Murali Salamon, Peter Seguini, Lorenzo Toreti, Andrea |
description | India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomaly recorded by FAOSTAT from 1961 to 2014. In that year, freshwater limitation was blamed as responsible for the yield losses in the southeastern coastal regions. Given the important implication for local food security and international market stability, we here investigate the specific mechanisms behind the effects of this extreme meteorological drought on rice yield at the national and regional levels. To this purpose, we integrate output from the hydrological model, surface, and satellite observations for the different rice cropping cycles into state-of-the-art and novel climate indicators. In particular, we adopt the standardized precipitation evapotranspiration index (SPEI) as an indicator of drought due to the local surface water balance anomalies (i.e., precipitation and evapotranspiration). We propose a new indicator of the renewable surface freshwater availability due to non-local sources, i.e., the standardized river discharge index (SDI) based on the anomalies of modelled river discharge data. We compare these indicators to the soil moisture observations retrieved from satellites. We link all diagnostics to the recorded yields at the national and regional level, quantifying the long-term correlations and the best match of the 2002 anomaly. Our findings highlight the need for integrating non-local surface freshwater dynamics with local rainfall variability to determine the soil moisture conditions in rice fields for yields assessment, modeling, and forecasting. |
doi_str_mv | 10.3390/rs10020244 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6418d8b8f8ec441cadcec5e24afb59a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6418d8b8f8ec441cadcec5e24afb59a1</doaj_id><sourcerecordid>2014756491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhYMoWGpf_AULvgmrue0lj6W0WigoavExTLOzmrLd1GQX7b83bUWdlznMHL45MIRcMnojhKK3PjBKOeVSnpABpwVPJVf89J8-J6MQ1jSWEExROSDL597XYDCZeQzvn9ChTxZ2YzvorGuT6de2AduG5NX50CVPNjofvat6c1iPW7eBZpfYNpm3lYW94DHDBTmroQk4-ulDspxNXyb36eLhbj4ZL1IjctalGeZClDVSWhuWC8mzTHG-ooIhRlVAAUhNdAjDMpVjhryWBaqClogKpBiS-ZFbOVjrrbcb8DvtwOrDwPk3Db6zpkGdS1ZW5aqsSzRSMgOVQROBEupVpoBF1tWRtfXuo8fQ6bXrfRvja06ZLLJcqr3r-ugy3oXgsf69yqjef0H_fUF8A3zxd-o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014756491</pqid></control><display><type>article</type><title>Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Zampieri, Matteo ; Carmona Garcia, Gema ; Dentener, Frank ; Gumma, Murali ; Salamon, Peter ; Seguini, Lorenzo ; Toreti, Andrea</creator><creatorcontrib>Zampieri, Matteo ; Carmona Garcia, Gema ; Dentener, Frank ; Gumma, Murali ; Salamon, Peter ; Seguini, Lorenzo ; Toreti, Andrea</creatorcontrib><description>India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomaly recorded by FAOSTAT from 1961 to 2014. In that year, freshwater limitation was blamed as responsible for the yield losses in the southeastern coastal regions. Given the important implication for local food security and international market stability, we here investigate the specific mechanisms behind the effects of this extreme meteorological drought on rice yield at the national and regional levels. To this purpose, we integrate output from the hydrological model, surface, and satellite observations for the different rice cropping cycles into state-of-the-art and novel climate indicators. In particular, we adopt the standardized precipitation evapotranspiration index (SPEI) as an indicator of drought due to the local surface water balance anomalies (i.e., precipitation and evapotranspiration). We propose a new indicator of the renewable surface freshwater availability due to non-local sources, i.e., the standardized river discharge index (SDI) based on the anomalies of modelled river discharge data. We compare these indicators to the soil moisture observations retrieved from satellites. We link all diagnostics to the recorded yields at the national and regional level, quantifying the long-term correlations and the best match of the 2002 anomaly. Our findings highlight the need for integrating non-local surface freshwater dynamics with local rainfall variability to determine the soil moisture conditions in rice fields for yields assessment, modeling, and forecasting.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs10020244</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anomalies ; Cereal crops ; climate change ; Coastal zone ; Crop production ; Crop yield ; Drought ; European Space Agency—Climate Change Initiative (ESA-CCI) ; Evapotranspiration ; Food security ; Fresh water ; Hydrologic models ; Hydrology ; India ; Indicators ; Monsoons ; Precipitation ; production ; Rain ; Rainfall ; Rice ; Rice fields ; River discharge ; River flow ; Rivers ; Satellite observation ; Satellites ; SDI ; seasonal forecasts ; Soil conditions ; Soil dynamics ; Soil moisture ; SPEI ; Supermarkets ; Surface water ; Water balance ; Water discharge ; yield</subject><ispartof>Remote sensing (Basel, Switzerland), 2018-02, Vol.10 (2), p.244</ispartof><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43</citedby><cites>FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43</cites><orcidid>0000-0003-0118-1328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2014756491/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2014756491?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Zampieri, Matteo</creatorcontrib><creatorcontrib>Carmona Garcia, Gema</creatorcontrib><creatorcontrib>Dentener, Frank</creatorcontrib><creatorcontrib>Gumma, Murali</creatorcontrib><creatorcontrib>Salamon, Peter</creatorcontrib><creatorcontrib>Seguini, Lorenzo</creatorcontrib><creatorcontrib>Toreti, Andrea</creatorcontrib><title>Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002</title><title>Remote sensing (Basel, Switzerland)</title><description>India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomaly recorded by FAOSTAT from 1961 to 2014. In that year, freshwater limitation was blamed as responsible for the yield losses in the southeastern coastal regions. Given the important implication for local food security and international market stability, we here investigate the specific mechanisms behind the effects of this extreme meteorological drought on rice yield at the national and regional levels. To this purpose, we integrate output from the hydrological model, surface, and satellite observations for the different rice cropping cycles into state-of-the-art and novel climate indicators. In particular, we adopt the standardized precipitation evapotranspiration index (SPEI) as an indicator of drought due to the local surface water balance anomalies (i.e., precipitation and evapotranspiration). We propose a new indicator of the renewable surface freshwater availability due to non-local sources, i.e., the standardized river discharge index (SDI) based on the anomalies of modelled river discharge data. We compare these indicators to the soil moisture observations retrieved from satellites. We link all diagnostics to the recorded yields at the national and regional level, quantifying the long-term correlations and the best match of the 2002 anomaly. Our findings highlight the need for integrating non-local surface freshwater dynamics with local rainfall variability to determine the soil moisture conditions in rice fields for yields assessment, modeling, and forecasting.</description><subject>Anomalies</subject><subject>Cereal crops</subject><subject>climate change</subject><subject>Coastal zone</subject><subject>Crop production</subject><subject>Crop yield</subject><subject>Drought</subject><subject>European Space Agency—Climate Change Initiative (ESA-CCI)</subject><subject>Evapotranspiration</subject><subject>Food security</subject><subject>Fresh water</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>India</subject><subject>Indicators</subject><subject>Monsoons</subject><subject>Precipitation</subject><subject>production</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rice</subject><subject>Rice fields</subject><subject>River discharge</subject><subject>River flow</subject><subject>Rivers</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>SDI</subject><subject>seasonal forecasts</subject><subject>Soil conditions</subject><subject>Soil dynamics</subject><subject>Soil moisture</subject><subject>SPEI</subject><subject>Supermarkets</subject><subject>Surface water</subject><subject>Water balance</subject><subject>Water discharge</subject><subject>yield</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhYMoWGpf_AULvgmrue0lj6W0WigoavExTLOzmrLd1GQX7b83bUWdlznMHL45MIRcMnojhKK3PjBKOeVSnpABpwVPJVf89J8-J6MQ1jSWEExROSDL597XYDCZeQzvn9ChTxZ2YzvorGuT6de2AduG5NX50CVPNjofvat6c1iPW7eBZpfYNpm3lYW94DHDBTmroQk4-ulDspxNXyb36eLhbj4ZL1IjctalGeZClDVSWhuWC8mzTHG-ooIhRlVAAUhNdAjDMpVjhryWBaqClogKpBiS-ZFbOVjrrbcb8DvtwOrDwPk3Db6zpkGdS1ZW5aqsSzRSMgOVQROBEupVpoBF1tWRtfXuo8fQ6bXrfRvja06ZLLJcqr3r-ugy3oXgsf69yqjef0H_fUF8A3zxd-o</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Zampieri, Matteo</creator><creator>Carmona Garcia, Gema</creator><creator>Dentener, Frank</creator><creator>Gumma, Murali</creator><creator>Salamon, Peter</creator><creator>Seguini, Lorenzo</creator><creator>Toreti, Andrea</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0118-1328</orcidid></search><sort><creationdate>20180201</creationdate><title>Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002</title><author>Zampieri, Matteo ; Carmona Garcia, Gema ; Dentener, Frank ; Gumma, Murali ; Salamon, Peter ; Seguini, Lorenzo ; Toreti, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Cereal crops</topic><topic>climate change</topic><topic>Coastal zone</topic><topic>Crop production</topic><topic>Crop yield</topic><topic>Drought</topic><topic>European Space Agency—Climate Change Initiative (ESA-CCI)</topic><topic>Evapotranspiration</topic><topic>Food security</topic><topic>Fresh water</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>India</topic><topic>Indicators</topic><topic>Monsoons</topic><topic>Precipitation</topic><topic>production</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rice</topic><topic>Rice fields</topic><topic>River discharge</topic><topic>River flow</topic><topic>Rivers</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>SDI</topic><topic>seasonal forecasts</topic><topic>Soil conditions</topic><topic>Soil dynamics</topic><topic>Soil moisture</topic><topic>SPEI</topic><topic>Supermarkets</topic><topic>Surface water</topic><topic>Water balance</topic><topic>Water discharge</topic><topic>yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zampieri, Matteo</creatorcontrib><creatorcontrib>Carmona Garcia, Gema</creatorcontrib><creatorcontrib>Dentener, Frank</creatorcontrib><creatorcontrib>Gumma, Murali</creatorcontrib><creatorcontrib>Salamon, Peter</creatorcontrib><creatorcontrib>Seguini, Lorenzo</creatorcontrib><creatorcontrib>Toreti, Andrea</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zampieri, Matteo</au><au>Carmona Garcia, Gema</au><au>Dentener, Frank</au><au>Gumma, Murali</au><au>Salamon, Peter</au><au>Seguini, Lorenzo</au><au>Toreti, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>244</spage><pages>244-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomaly recorded by FAOSTAT from 1961 to 2014. In that year, freshwater limitation was blamed as responsible for the yield losses in the southeastern coastal regions. Given the important implication for local food security and international market stability, we here investigate the specific mechanisms behind the effects of this extreme meteorological drought on rice yield at the national and regional levels. To this purpose, we integrate output from the hydrological model, surface, and satellite observations for the different rice cropping cycles into state-of-the-art and novel climate indicators. In particular, we adopt the standardized precipitation evapotranspiration index (SPEI) as an indicator of drought due to the local surface water balance anomalies (i.e., precipitation and evapotranspiration). We propose a new indicator of the renewable surface freshwater availability due to non-local sources, i.e., the standardized river discharge index (SDI) based on the anomalies of modelled river discharge data. We compare these indicators to the soil moisture observations retrieved from satellites. We link all diagnostics to the recorded yields at the national and regional level, quantifying the long-term correlations and the best match of the 2002 anomaly. Our findings highlight the need for integrating non-local surface freshwater dynamics with local rainfall variability to determine the soil moisture conditions in rice fields for yields assessment, modeling, and forecasting.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs10020244</doi><orcidid>https://orcid.org/0000-0003-0118-1328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2018-02, Vol.10 (2), p.244 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6418d8b8f8ec441cadcec5e24afb59a1 |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | Anomalies Cereal crops climate change Coastal zone Crop production Crop yield Drought European Space Agency—Climate Change Initiative (ESA-CCI) Evapotranspiration Food security Fresh water Hydrologic models Hydrology India Indicators Monsoons Precipitation production Rain Rainfall Rice Rice fields River discharge River flow Rivers Satellite observation Satellites SDI seasonal forecasts Soil conditions Soil dynamics Soil moisture SPEI Supermarkets Surface water Water balance Water discharge yield |
title | Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Freshwater%20Limitation%20Explains%20Worst%20Rice%20Production%20Anomaly%20in%20India%20in%202002&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Zampieri,%20Matteo&rft.date=2018-02-01&rft.volume=10&rft.issue=2&rft.spage=244&rft.pages=244-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs10020244&rft_dat=%3Cproquest_doaj_%3E2014756491%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-5e6338fe00fc1634255922b031ee5927a7ae0c38f3c1596e5e2f47e9708ee9a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2014756491&rft_id=info:pmid/&rfr_iscdi=true |