Loading…

Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform

Queueing systems with random resource requirements, in which an arriving customer, in addition to a server, demands a random amount of resources from a shared resource pool, have proved useful to analyze wireless communication networks. The stationary distributions of such queuing systems are expres...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2020-05, Vol.8 (5), p.772
Main Authors: Naumov, Valeriy A., Gaidamaka, Yuliya V., Samouylov, Konstantin E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3
cites cdi_FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3
container_end_page
container_issue 5
container_start_page 772
container_title Mathematics (Basel)
container_volume 8
creator Naumov, Valeriy A.
Gaidamaka, Yuliya V.
Samouylov, Konstantin E.
description Queueing systems with random resource requirements, in which an arriving customer, in addition to a server, demands a random amount of resources from a shared resource pool, have proved useful to analyze wireless communication networks. The stationary distributions of such queuing systems are expressed in terms of truncated convolution powers of the cumulative distribution function of the resource requirements. Discretization of the cumulative distribution function and the application of the fast Fourier transform are a traditional way of calculating convolutions. We suggest finding truncated convolution powers of the cumulative distribution functions by calculating the convolution powers of the truncated cumulative distribution functions via fast Fourier transform. This radically decreases computational complexity. We introduce the concept of resource load and investigate the accuracy of the proposed method at low and high resource loads. It is shown that the proposed method makes it possible to quickly and accurately calculate truncated convolution powers required for the analysis of queuing systems with random resource requirements.
doi_str_mv 10.3390/math8050772
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6422721b176e4d9da5d14ebeb603d9d7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6422721b176e4d9da5d14ebeb603d9d7</doaj_id><sourcerecordid>oai_doaj_org_article_6422721b176e4d9da5d14ebeb603d9d7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3</originalsourceid><addsrcrecordid>eNpNkU1PwkAQhhujiQQ5-Qf2bqr7wXa7R4OiJCRGwHMzbWdhCe3i7hbDv7eoMcxl3vnIk8y8SXLL6L0Qmj40EDc5lVQpfpEMOOcqVX3_8kxfJ6MQtrQPzUQ-1oPkMHHNvou2XZO4QbKMEK1rwR_Jkw3R27I71cQZ8t5hh6e95TFEbAL5snFDFtDWriELDK7zFfbis7MeG2xjIAcLZAohkmk_tOjJykMbjPPNTXJlYBdw9JeHycf0eTV5TedvL7PJ4zythMhiCpgrlkmpTY3GVAiSliVnArKSUiFz1KICLqkppak106gVx3GtJa9BVRrFMJn9cmsH22LvbdOfVjiwxU_D-XUBPtpqh0U27r_EWclUdkLUIGs2xhLLjIq-VD3r7pdVeReCR_PPY7Q4OVCcOSC-AfPffHw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Naumov, Valeriy A. ; Gaidamaka, Yuliya V. ; Samouylov, Konstantin E.</creator><creatorcontrib>Naumov, Valeriy A. ; Gaidamaka, Yuliya V. ; Samouylov, Konstantin E.</creatorcontrib><description>Queueing systems with random resource requirements, in which an arriving customer, in addition to a server, demands a random amount of resources from a shared resource pool, have proved useful to analyze wireless communication networks. The stationary distributions of such queuing systems are expressed in terms of truncated convolution powers of the cumulative distribution function of the resource requirements. Discretization of the cumulative distribution function and the application of the fast Fourier transform are a traditional way of calculating convolutions. We suggest finding truncated convolution powers of the cumulative distribution functions by calculating the convolution powers of the truncated cumulative distribution functions via fast Fourier transform. This radically decreases computational complexity. We introduce the concept of resource load and investigate the accuracy of the proposed method at low and high resource loads. It is shown that the proposed method makes it possible to quickly and accurately calculate truncated convolution powers required for the analysis of queuing systems with random resource requirements.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math8050772</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>discretization ; fast Fourier transform ; queueing system ; random resource requirements</subject><ispartof>Mathematics (Basel), 2020-05, Vol.8 (5), p.772</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3</citedby><cites>FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3</cites><orcidid>0000-0003-2655-4805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Naumov, Valeriy A.</creatorcontrib><creatorcontrib>Gaidamaka, Yuliya V.</creatorcontrib><creatorcontrib>Samouylov, Konstantin E.</creatorcontrib><title>Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform</title><title>Mathematics (Basel)</title><description>Queueing systems with random resource requirements, in which an arriving customer, in addition to a server, demands a random amount of resources from a shared resource pool, have proved useful to analyze wireless communication networks. The stationary distributions of such queuing systems are expressed in terms of truncated convolution powers of the cumulative distribution function of the resource requirements. Discretization of the cumulative distribution function and the application of the fast Fourier transform are a traditional way of calculating convolutions. We suggest finding truncated convolution powers of the cumulative distribution functions by calculating the convolution powers of the truncated cumulative distribution functions via fast Fourier transform. This radically decreases computational complexity. We introduce the concept of resource load and investigate the accuracy of the proposed method at low and high resource loads. It is shown that the proposed method makes it possible to quickly and accurately calculate truncated convolution powers required for the analysis of queuing systems with random resource requirements.</description><subject>discretization</subject><subject>fast Fourier transform</subject><subject>queueing system</subject><subject>random resource requirements</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkU1PwkAQhhujiQQ5-Qf2bqr7wXa7R4OiJCRGwHMzbWdhCe3i7hbDv7eoMcxl3vnIk8y8SXLL6L0Qmj40EDc5lVQpfpEMOOcqVX3_8kxfJ6MQtrQPzUQ-1oPkMHHNvou2XZO4QbKMEK1rwR_Jkw3R27I71cQZ8t5hh6e95TFEbAL5snFDFtDWriELDK7zFfbis7MeG2xjIAcLZAohkmk_tOjJykMbjPPNTXJlYBdw9JeHycf0eTV5TedvL7PJ4zythMhiCpgrlkmpTY3GVAiSliVnArKSUiFz1KICLqkppak106gVx3GtJa9BVRrFMJn9cmsH22LvbdOfVjiwxU_D-XUBPtpqh0U27r_EWclUdkLUIGs2xhLLjIq-VD3r7pdVeReCR_PPY7Q4OVCcOSC-AfPffHw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Naumov, Valeriy A.</creator><creator>Gaidamaka, Yuliya V.</creator><creator>Samouylov, Konstantin E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2655-4805</orcidid></search><sort><creationdate>20200501</creationdate><title>Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform</title><author>Naumov, Valeriy A. ; Gaidamaka, Yuliya V. ; Samouylov, Konstantin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>discretization</topic><topic>fast Fourier transform</topic><topic>queueing system</topic><topic>random resource requirements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naumov, Valeriy A.</creatorcontrib><creatorcontrib>Gaidamaka, Yuliya V.</creatorcontrib><creatorcontrib>Samouylov, Konstantin E.</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naumov, Valeriy A.</au><au>Gaidamaka, Yuliya V.</au><au>Samouylov, Konstantin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform</atitle><jtitle>Mathematics (Basel)</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>8</volume><issue>5</issue><spage>772</spage><pages>772-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Queueing systems with random resource requirements, in which an arriving customer, in addition to a server, demands a random amount of resources from a shared resource pool, have proved useful to analyze wireless communication networks. The stationary distributions of such queuing systems are expressed in terms of truncated convolution powers of the cumulative distribution function of the resource requirements. Discretization of the cumulative distribution function and the application of the fast Fourier transform are a traditional way of calculating convolutions. We suggest finding truncated convolution powers of the cumulative distribution functions by calculating the convolution powers of the truncated cumulative distribution functions via fast Fourier transform. This radically decreases computational complexity. We introduce the concept of resource load and investigate the accuracy of the proposed method at low and high resource loads. It is shown that the proposed method makes it possible to quickly and accurately calculate truncated convolution powers required for the analysis of queuing systems with random resource requirements.</abstract><pub>MDPI AG</pub><doi>10.3390/math8050772</doi><orcidid>https://orcid.org/0000-0003-2655-4805</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2020-05, Vol.8 (5), p.772
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6422721b176e4d9da5d14ebeb603d9d7
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects discretization
fast Fourier transform
queueing system
random resource requirements
title Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20the%20Stationary%20Distribution%20of%20Queueing%20Systems%20with%20Random%20Resource%20Requirements%20via%20Fast%20Fourier%20Transform&rft.jtitle=Mathematics%20(Basel)&rft.au=Naumov,%20Valeriy%20A.&rft.date=2020-05-01&rft.volume=8&rft.issue=5&rft.spage=772&rft.pages=772-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math8050772&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_6422721b176e4d9da5d14ebeb603d9d7%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ae8716559fdeffcea50bb213a6b00358e93ca250fb5fd919e972e4d952da7c9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true