Loading…
Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment
Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. This is particularly the case for snail‐borne diseases such as the urogenital bilharziasis that emerged in Corsica and threat European countries...
Saved in:
Published in: | Environmental DNA (Hoboken, N.J.) N.J.), 2020-04, Vol.2 (2), p.161-174 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703 |
---|---|
cites | cdi_FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703 |
container_end_page | 174 |
container_issue | 2 |
container_start_page | 161 |
container_title | Environmental DNA (Hoboken, N.J.) |
container_volume | 2 |
creator | Mulero, Stephen Boissier, Jérôme Allienne, Jean‐François Quilichini, Yann Foata, Joséphine Pointier, Jean‐Pierre Rey, Olivier |
description | Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. This is particularly the case for snail‐borne diseases such as the urogenital bilharziasis that emerged in Corsica and threat European countries. The expansion of this tropical disease mainly relies on the local presence of competent snail hosts such as Bulinus truncatus. Unfortunately, very little is known about the actual repartition of freshwater snails worldwide which makes new emergences difficult to predict. In this study, we developed two ready‐to‐use environmental DNA‐based methods for assessing the distribution of B. truncatus from water samples collected in the field. We used two approaches, a quantitative PCR (qPCR) and a droplet digital PCR (ddPCR) approach. We successfully detected B. truncatus in natural environments where the snail was previously visually reported. Our environmental DNA diagnostic methods showed a high sensitivity (≈60 DNA copy per mL of filtered water) and a high specificity to B. truncatus. Results obtained in qPCR and ddPCR were very similar. This study demonstrates that environmental DNA diagnostics tools enable a sensitive large‐scale monitoring of snail‐borne diseases hence allowing the delimitation of areas potentially threatened by urogenital schistosomiasis.
Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. Especially for snail‐borne diseases such as the urogenital bilharziasis that threat European countries. The widespread of this tropical disease relies on the local presence of compatible snail hosts such as Bulinus truncatus, but very little is known about the actual repartition of this freshwater snail. In this study, we developed two ready‐to‐use environmental DNA‐based methods (using quantitative PCR and droplet digital PCR for the quick update of B. truncatus distribution from water samples collected in the field. |
doi_str_mv | 10.1002/edn3.53 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_642ed7f5f016450287fb9ebb5ed820c4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_642ed7f5f016450287fb9ebb5ed820c4</doaj_id><sourcerecordid>2390201575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703</originalsourceid><addsrcrecordid>eNp1kc1u1DAQgCMEEtVS8QqWOCCEtvg33nBb2qWttCoXOFuOM9568drFk2zVF-C5SZoK0QOnGY2--TQ_VfWW0TNGKf8EXRJnSryoTngt9FI2Urz8J39dnSLu6UgyzahgJ9XvTTqGktMBUm8jubhZE58L6aAH14e0I1-GGNKApC9DcrYf8DNZkwT3BJ414lCOEGK0yQHpc46PGnS3AfuM-RAsBiRwgLKDCSkBfxKLCIiT4U31ytuIcPoUF9WPr5vv51fL7bfL6_P1dumkYGKpa98wyq1jtuPace_arnbcAVuB0jV0QjZWtlZ1jRWrtnFtK5UUvtWikV5TsaiuZ2-X7d7clXCw5cFkG8xjIZedsaUPLoKpJYdOe-Upq6WifKV920DbKuhWnI7zLKoPs-vWxmeqq_XWTDXK5Xjmhh3ZyL6b2buSfw2AvdnnoaRxVcNFQzllSquRej9TrmTEAv6vllEz_ddM_zVKjOTHmbwPER7-h5nNxY0Y6T95eKeu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390201575</pqid></control><display><type>article</type><title>Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Mulero, Stephen ; Boissier, Jérôme ; Allienne, Jean‐François ; Quilichini, Yann ; Foata, Joséphine ; Pointier, Jean‐Pierre ; Rey, Olivier</creator><creatorcontrib>Mulero, Stephen ; Boissier, Jérôme ; Allienne, Jean‐François ; Quilichini, Yann ; Foata, Joséphine ; Pointier, Jean‐Pierre ; Rey, Olivier</creatorcontrib><description>Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. This is particularly the case for snail‐borne diseases such as the urogenital bilharziasis that emerged in Corsica and threat European countries. The expansion of this tropical disease mainly relies on the local presence of competent snail hosts such as Bulinus truncatus. Unfortunately, very little is known about the actual repartition of freshwater snails worldwide which makes new emergences difficult to predict. In this study, we developed two ready‐to‐use environmental DNA‐based methods for assessing the distribution of B. truncatus from water samples collected in the field. We used two approaches, a quantitative PCR (qPCR) and a droplet digital PCR (ddPCR) approach. We successfully detected B. truncatus in natural environments where the snail was previously visually reported. Our environmental DNA diagnostic methods showed a high sensitivity (≈60 DNA copy per mL of filtered water) and a high specificity to B. truncatus. Results obtained in qPCR and ddPCR were very similar. This study demonstrates that environmental DNA diagnostics tools enable a sensitive large‐scale monitoring of snail‐borne diseases hence allowing the delimitation of areas potentially threatened by urogenital schistosomiasis.
Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. Especially for snail‐borne diseases such as the urogenital bilharziasis that threat European countries. The widespread of this tropical disease relies on the local presence of compatible snail hosts such as Bulinus truncatus, but very little is known about the actual repartition of this freshwater snail. In this study, we developed two ready‐to‐use environmental DNA‐based methods (using quantitative PCR and droplet digital PCR for the quick update of B. truncatus distribution from water samples collected in the field.</description><identifier>ISSN: 2637-4943</identifier><identifier>EISSN: 2637-4943</identifier><identifier>DOI: 10.1002/edn3.53</identifier><language>eng</language><publisher>Hoboken: John Wiley & Sons, Inc</publisher><subject>Biodiversity ; Bulinus truncatus ; Climate change ; Corsica ; ddPCR ; Deoxyribonucleic acid ; Diagnostic systems ; Disease ; DNA ; Emergence ; Environmental assessment ; environmental DNA ; environmental monitoring ; Environmental risk ; Epidemiology ; Health risks ; Life Sciences ; Livestock ; Mollusks ; Monitoring ; Parasites ; Pathogens ; Polymerase chain reaction ; Populations and Evolution ; Precipitation ; qPCR ; Risk assessment ; Schistosomiasis ; Snails ; Tropical diseases ; Water analysis ; Water purification ; Water sampling</subject><ispartof>Environmental DNA (Hoboken, N.J.), 2020-04, Vol.2 (2), p.161-174</ispartof><rights>2019 The Authors. published by John Wiley & Sons Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703</citedby><cites>FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703</cites><orcidid>0000-0002-0793-3108 ; 0000-0003-4462-3712 ; 0000-0002-0853-0730 ; 0000-0003-0739-0155 ; 0000-0003-3699-7204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2390201575/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2390201575?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11562,25753,27924,27925,37012,44590,46052,46476,75126</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02417191$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulero, Stephen</creatorcontrib><creatorcontrib>Boissier, Jérôme</creatorcontrib><creatorcontrib>Allienne, Jean‐François</creatorcontrib><creatorcontrib>Quilichini, Yann</creatorcontrib><creatorcontrib>Foata, Joséphine</creatorcontrib><creatorcontrib>Pointier, Jean‐Pierre</creatorcontrib><creatorcontrib>Rey, Olivier</creatorcontrib><title>Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment</title><title>Environmental DNA (Hoboken, N.J.)</title><description>Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. This is particularly the case for snail‐borne diseases such as the urogenital bilharziasis that emerged in Corsica and threat European countries. The expansion of this tropical disease mainly relies on the local presence of competent snail hosts such as Bulinus truncatus. Unfortunately, very little is known about the actual repartition of freshwater snails worldwide which makes new emergences difficult to predict. In this study, we developed two ready‐to‐use environmental DNA‐based methods for assessing the distribution of B. truncatus from water samples collected in the field. We used two approaches, a quantitative PCR (qPCR) and a droplet digital PCR (ddPCR) approach. We successfully detected B. truncatus in natural environments where the snail was previously visually reported. Our environmental DNA diagnostic methods showed a high sensitivity (≈60 DNA copy per mL of filtered water) and a high specificity to B. truncatus. Results obtained in qPCR and ddPCR were very similar. This study demonstrates that environmental DNA diagnostics tools enable a sensitive large‐scale monitoring of snail‐borne diseases hence allowing the delimitation of areas potentially threatened by urogenital schistosomiasis.
Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. Especially for snail‐borne diseases such as the urogenital bilharziasis that threat European countries. The widespread of this tropical disease relies on the local presence of compatible snail hosts such as Bulinus truncatus, but very little is known about the actual repartition of this freshwater snail. In this study, we developed two ready‐to‐use environmental DNA‐based methods (using quantitative PCR and droplet digital PCR for the quick update of B. truncatus distribution from water samples collected in the field.</description><subject>Biodiversity</subject><subject>Bulinus truncatus</subject><subject>Climate change</subject><subject>Corsica</subject><subject>ddPCR</subject><subject>Deoxyribonucleic acid</subject><subject>Diagnostic systems</subject><subject>Disease</subject><subject>DNA</subject><subject>Emergence</subject><subject>Environmental assessment</subject><subject>environmental DNA</subject><subject>environmental monitoring</subject><subject>Environmental risk</subject><subject>Epidemiology</subject><subject>Health risks</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Mollusks</subject><subject>Monitoring</subject><subject>Parasites</subject><subject>Pathogens</subject><subject>Polymerase chain reaction</subject><subject>Populations and Evolution</subject><subject>Precipitation</subject><subject>qPCR</subject><subject>Risk assessment</subject><subject>Schistosomiasis</subject><subject>Snails</subject><subject>Tropical diseases</subject><subject>Water analysis</subject><subject>Water purification</subject><subject>Water sampling</subject><issn>2637-4943</issn><issn>2637-4943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1u1DAQgCMEEtVS8QqWOCCEtvg33nBb2qWttCoXOFuOM9568drFk2zVF-C5SZoK0QOnGY2--TQ_VfWW0TNGKf8EXRJnSryoTngt9FI2Urz8J39dnSLu6UgyzahgJ9XvTTqGktMBUm8jubhZE58L6aAH14e0I1-GGNKApC9DcrYf8DNZkwT3BJ414lCOEGK0yQHpc46PGnS3AfuM-RAsBiRwgLKDCSkBfxKLCIiT4U31ytuIcPoUF9WPr5vv51fL7bfL6_P1dumkYGKpa98wyq1jtuPace_arnbcAVuB0jV0QjZWtlZ1jRWrtnFtK5UUvtWikV5TsaiuZ2-X7d7clXCw5cFkG8xjIZedsaUPLoKpJYdOe-Upq6WifKV920DbKuhWnI7zLKoPs-vWxmeqq_XWTDXK5Xjmhh3ZyL6b2buSfw2AvdnnoaRxVcNFQzllSquRej9TrmTEAv6vllEz_ddM_zVKjOTHmbwPER7-h5nNxY0Y6T95eKeu</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Mulero, Stephen</creator><creator>Boissier, Jérôme</creator><creator>Allienne, Jean‐François</creator><creator>Quilichini, Yann</creator><creator>Foata, Joséphine</creator><creator>Pointier, Jean‐Pierre</creator><creator>Rey, Olivier</creator><general>John Wiley & Sons, Inc</general><general>John Wiley & Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0793-3108</orcidid><orcidid>https://orcid.org/0000-0003-4462-3712</orcidid><orcidid>https://orcid.org/0000-0002-0853-0730</orcidid><orcidid>https://orcid.org/0000-0003-0739-0155</orcidid><orcidid>https://orcid.org/0000-0003-3699-7204</orcidid></search><sort><creationdate>202004</creationdate><title>Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment</title><author>Mulero, Stephen ; Boissier, Jérôme ; Allienne, Jean‐François ; Quilichini, Yann ; Foata, Joséphine ; Pointier, Jean‐Pierre ; Rey, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity</topic><topic>Bulinus truncatus</topic><topic>Climate change</topic><topic>Corsica</topic><topic>ddPCR</topic><topic>Deoxyribonucleic acid</topic><topic>Diagnostic systems</topic><topic>Disease</topic><topic>DNA</topic><topic>Emergence</topic><topic>Environmental assessment</topic><topic>environmental DNA</topic><topic>environmental monitoring</topic><topic>Environmental risk</topic><topic>Epidemiology</topic><topic>Health risks</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Mollusks</topic><topic>Monitoring</topic><topic>Parasites</topic><topic>Pathogens</topic><topic>Polymerase chain reaction</topic><topic>Populations and Evolution</topic><topic>Precipitation</topic><topic>qPCR</topic><topic>Risk assessment</topic><topic>Schistosomiasis</topic><topic>Snails</topic><topic>Tropical diseases</topic><topic>Water analysis</topic><topic>Water purification</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulero, Stephen</creatorcontrib><creatorcontrib>Boissier, Jérôme</creatorcontrib><creatorcontrib>Allienne, Jean‐François</creatorcontrib><creatorcontrib>Quilichini, Yann</creatorcontrib><creatorcontrib>Foata, Joséphine</creatorcontrib><creatorcontrib>Pointier, Jean‐Pierre</creatorcontrib><creatorcontrib>Rey, Olivier</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental DNA (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulero, Stephen</au><au>Boissier, Jérôme</au><au>Allienne, Jean‐François</au><au>Quilichini, Yann</au><au>Foata, Joséphine</au><au>Pointier, Jean‐Pierre</au><au>Rey, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment</atitle><jtitle>Environmental DNA (Hoboken, N.J.)</jtitle><date>2020-04</date><risdate>2020</risdate><volume>2</volume><issue>2</issue><spage>161</spage><epage>174</epage><pages>161-174</pages><issn>2637-4943</issn><eissn>2637-4943</eissn><abstract>Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. This is particularly the case for snail‐borne diseases such as the urogenital bilharziasis that emerged in Corsica and threat European countries. The expansion of this tropical disease mainly relies on the local presence of competent snail hosts such as Bulinus truncatus. Unfortunately, very little is known about the actual repartition of freshwater snails worldwide which makes new emergences difficult to predict. In this study, we developed two ready‐to‐use environmental DNA‐based methods for assessing the distribution of B. truncatus from water samples collected in the field. We used two approaches, a quantitative PCR (qPCR) and a droplet digital PCR (ddPCR) approach. We successfully detected B. truncatus in natural environments where the snail was previously visually reported. Our environmental DNA diagnostic methods showed a high sensitivity (≈60 DNA copy per mL of filtered water) and a high specificity to B. truncatus. Results obtained in qPCR and ddPCR were very similar. This study demonstrates that environmental DNA diagnostics tools enable a sensitive large‐scale monitoring of snail‐borne diseases hence allowing the delimitation of areas potentially threatened by urogenital schistosomiasis.
Under ongoing climate changes, the development of large‐scale monitoring tools for assessing the risk of disease emergence constitutes an urging challenge. Especially for snail‐borne diseases such as the urogenital bilharziasis that threat European countries. The widespread of this tropical disease relies on the local presence of compatible snail hosts such as Bulinus truncatus, but very little is known about the actual repartition of this freshwater snail. In this study, we developed two ready‐to‐use environmental DNA‐based methods (using quantitative PCR and droplet digital PCR for the quick update of B. truncatus distribution from water samples collected in the field.</abstract><cop>Hoboken</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/edn3.53</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0793-3108</orcidid><orcidid>https://orcid.org/0000-0003-4462-3712</orcidid><orcidid>https://orcid.org/0000-0002-0853-0730</orcidid><orcidid>https://orcid.org/0000-0003-0739-0155</orcidid><orcidid>https://orcid.org/0000-0003-3699-7204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2637-4943 |
ispartof | Environmental DNA (Hoboken, N.J.), 2020-04, Vol.2 (2), p.161-174 |
issn | 2637-4943 2637-4943 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_642ed7f5f016450287fb9ebb5ed820c4 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Biodiversity Bulinus truncatus Climate change Corsica ddPCR Deoxyribonucleic acid Diagnostic systems Disease DNA Emergence Environmental assessment environmental DNA environmental monitoring Environmental risk Epidemiology Health risks Life Sciences Livestock Mollusks Monitoring Parasites Pathogens Polymerase chain reaction Populations and Evolution Precipitation qPCR Risk assessment Schistosomiasis Snails Tropical diseases Water analysis Water purification Water sampling |
title | Environmental DNA for detecting Bulinus truncatus: A new environmental surveillance tool for schistosomiasis emergence risk assessment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20DNA%20for%20detecting%20Bulinus%20truncatus:%20A%20new%20environmental%20surveillance%20tool%20for%20schistosomiasis%20emergence%20risk%20assessment&rft.jtitle=Environmental%20DNA%20(Hoboken,%20N.J.)&rft.au=Mulero,%20Stephen&rft.date=2020-04&rft.volume=2&rft.issue=2&rft.spage=161&rft.epage=174&rft.pages=161-174&rft.issn=2637-4943&rft.eissn=2637-4943&rft_id=info:doi/10.1002/edn3.53&rft_dat=%3Cproquest_doaj_%3E2390201575%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4313-76f9102ac1ad27c2fcbd6c2ce18e576ed349a4ba5d9a38b9cbb4543fb7394f703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390201575&rft_id=info:pmid/&rfr_iscdi=true |