Loading…
A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study
With the ultimate goal of developing models that involve the use of environmental variables, a GIS-based application is being developed that is circumscribed to the region of Galicia (Spain). Ten-minute data of six meteorological variables were collected from 150 stations of the MeteoGalicia network...
Saved in:
Published in: | Applied sciences 2023-11, Vol.13 (22), p.12260 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-17e8f7549fe404dcfc247f870c4e3c53d84b76bed9fe612b7695783a0aaca4923 |
container_end_page | |
container_issue | 22 |
container_start_page | 12260 |
container_title | Applied sciences |
container_volume | 13 |
creator | Vidal-Paz, José Rodríguez-Gómez, Benigno Antonio Orosa, José A. |
description | With the ultimate goal of developing models that involve the use of environmental variables, a GIS-based application is being developed that is circumscribed to the region of Galicia (Spain). Ten-minute data of six meteorological variables were collected from 150 stations of the MeteoGalicia network over a period of 18 years, but the time series data are not complete. In order to estimate missing rainfall data, four imputation methods were evaluated in this study: missForest, MICE, Amelia II, and inverse distance weighting (IDW). Crossvalidation results show that the precipitation is out of phase in the different stations due to their geographical locations, and the imputation can be improved with a displacement of the time series; on the other hand, the missForest method provided better results in the imputation of this meteorological variable than the MICE, Amelia, or IDW. |
doi_str_mv | 10.3390/app132212260 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_644a71cf27c046c08f6333aab4133d79</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A774316924</galeid><doaj_id>oai_doaj_org_article_644a71cf27c046c08f6333aab4133d79</doaj_id><sourcerecordid>A774316924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-17e8f7549fe404dcfc247f870c4e3c53d84b76bed9fe612b7695783a0aaca4923</originalsourceid><addsrcrecordid>eNpNUU1LQzEQfIiCot78AQGvVpNsmrx4K_WroCh-nMM2L9GU9uWZpIf-e6MVcS-7DDPDsNM0J4yeA2h6gcPAgHPGuaQ7zQGnSo5AMLX7795vjnNe0DqaQcvoQfM0IdO4GjCFHHsSPbkK3rvk-kIeXPmIXSY-JvKMofe4XJLZalgXLCH2l2RCbnEZbMCeTDE78lLW3eao2avE7I5_92HzdnP9Or0b3T_ezqaT-5EFCWXElGu9GgvtnaCis95yoXyrqBUO7Bi6VsyVnLuuEiTj9dZj1QJSRItCczhsZlvfLuLCDCmsMG1MxGB-gJjeDaYS7NIZKQQqZj1XlgppaeslACDOBQPolK5ep1uvIcXPtcvFLOI69TW-4a3mWo0Z_2adb1nvWE3rP2JJNYzFzq2Cjb3zoeITpQQwqbmogrOtwKaYc3L-Lyaj5rsz878z-AIvv4bE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892975129</pqid></control><display><type>article</type><title>A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study</title><source>ProQuest - Publicly Available Content Database</source><creator>Vidal-Paz, José ; Rodríguez-Gómez, Benigno Antonio ; Orosa, José A.</creator><creatorcontrib>Vidal-Paz, José ; Rodríguez-Gómez, Benigno Antonio ; Orosa, José A.</creatorcontrib><description>With the ultimate goal of developing models that involve the use of environmental variables, a GIS-based application is being developed that is circumscribed to the region of Galicia (Spain). Ten-minute data of six meteorological variables were collected from 150 stations of the MeteoGalicia network over a period of 18 years, but the time series data are not complete. In order to estimate missing rainfall data, four imputation methods were evaluated in this study: missForest, MICE, Amelia II, and inverse distance weighting (IDW). Crossvalidation results show that the precipitation is out of phase in the different stations due to their geographical locations, and the imputation can be improved with a displacement of the time series; on the other hand, the missForest method provided better results in the imputation of this meteorological variable than the MICE, Amelia, or IDW.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app132212260</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Altitude ; Autumn ; Case studies ; Coasts ; Comparative analysis ; Discriminant analysis ; Geographic information systems ; imputation ; Methods ; Missing data ; Mountains ; Precipitation ; Rain ; Rain and rainfall ; rainfall ; Time series ; Winter</subject><ispartof>Applied sciences, 2023-11, Vol.13 (22), p.12260</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-17e8f7549fe404dcfc247f870c4e3c53d84b76bed9fe612b7695783a0aaca4923</cites><orcidid>0000-0002-7012-9518 ; 0000-0002-8384-908X ; 0000-0002-0424-5764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2892975129/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2892975129?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Vidal-Paz, José</creatorcontrib><creatorcontrib>Rodríguez-Gómez, Benigno Antonio</creatorcontrib><creatorcontrib>Orosa, José A.</creatorcontrib><title>A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study</title><title>Applied sciences</title><description>With the ultimate goal of developing models that involve the use of environmental variables, a GIS-based application is being developed that is circumscribed to the region of Galicia (Spain). Ten-minute data of six meteorological variables were collected from 150 stations of the MeteoGalicia network over a period of 18 years, but the time series data are not complete. In order to estimate missing rainfall data, four imputation methods were evaluated in this study: missForest, MICE, Amelia II, and inverse distance weighting (IDW). Crossvalidation results show that the precipitation is out of phase in the different stations due to their geographical locations, and the imputation can be improved with a displacement of the time series; on the other hand, the missForest method provided better results in the imputation of this meteorological variable than the MICE, Amelia, or IDW.</description><subject>Altitude</subject><subject>Autumn</subject><subject>Case studies</subject><subject>Coasts</subject><subject>Comparative analysis</subject><subject>Discriminant analysis</subject><subject>Geographic information systems</subject><subject>imputation</subject><subject>Methods</subject><subject>Missing data</subject><subject>Mountains</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>rainfall</subject><subject>Time series</subject><subject>Winter</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LQzEQfIiCot78AQGvVpNsmrx4K_WroCh-nMM2L9GU9uWZpIf-e6MVcS-7DDPDsNM0J4yeA2h6gcPAgHPGuaQ7zQGnSo5AMLX7795vjnNe0DqaQcvoQfM0IdO4GjCFHHsSPbkK3rvk-kIeXPmIXSY-JvKMofe4XJLZalgXLCH2l2RCbnEZbMCeTDE78lLW3eao2avE7I5_92HzdnP9Or0b3T_ezqaT-5EFCWXElGu9GgvtnaCis95yoXyrqBUO7Bi6VsyVnLuuEiTj9dZj1QJSRItCczhsZlvfLuLCDCmsMG1MxGB-gJjeDaYS7NIZKQQqZj1XlgppaeslACDOBQPolK5ep1uvIcXPtcvFLOI69TW-4a3mWo0Z_2adb1nvWE3rP2JJNYzFzq2Cjb3zoeITpQQwqbmogrOtwKaYc3L-Lyaj5rsz878z-AIvv4bE</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Vidal-Paz, José</creator><creator>Rodríguez-Gómez, Benigno Antonio</creator><creator>Orosa, José A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7012-9518</orcidid><orcidid>https://orcid.org/0000-0002-8384-908X</orcidid><orcidid>https://orcid.org/0000-0002-0424-5764</orcidid></search><sort><creationdate>20231101</creationdate><title>A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study</title><author>Vidal-Paz, José ; Rodríguez-Gómez, Benigno Antonio ; Orosa, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-17e8f7549fe404dcfc247f870c4e3c53d84b76bed9fe612b7695783a0aaca4923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Altitude</topic><topic>Autumn</topic><topic>Case studies</topic><topic>Coasts</topic><topic>Comparative analysis</topic><topic>Discriminant analysis</topic><topic>Geographic information systems</topic><topic>imputation</topic><topic>Methods</topic><topic>Missing data</topic><topic>Mountains</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>rainfall</topic><topic>Time series</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal-Paz, José</creatorcontrib><creatorcontrib>Rodríguez-Gómez, Benigno Antonio</creatorcontrib><creatorcontrib>Orosa, José A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal-Paz, José</au><au>Rodríguez-Gómez, Benigno Antonio</au><au>Orosa, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study</atitle><jtitle>Applied sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>22</issue><spage>12260</spage><pages>12260-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>With the ultimate goal of developing models that involve the use of environmental variables, a GIS-based application is being developed that is circumscribed to the region of Galicia (Spain). Ten-minute data of six meteorological variables were collected from 150 stations of the MeteoGalicia network over a period of 18 years, but the time series data are not complete. In order to estimate missing rainfall data, four imputation methods were evaluated in this study: missForest, MICE, Amelia II, and inverse distance weighting (IDW). Crossvalidation results show that the precipitation is out of phase in the different stations due to their geographical locations, and the imputation can be improved with a displacement of the time series; on the other hand, the missForest method provided better results in the imputation of this meteorological variable than the MICE, Amelia, or IDW.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app132212260</doi><orcidid>https://orcid.org/0000-0002-7012-9518</orcidid><orcidid>https://orcid.org/0000-0002-8384-908X</orcidid><orcidid>https://orcid.org/0000-0002-0424-5764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-11, Vol.13 (22), p.12260 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_644a71cf27c046c08f6333aab4133d79 |
source | ProQuest - Publicly Available Content Database |
subjects | Altitude Autumn Case studies Coasts Comparative analysis Discriminant analysis Geographic information systems imputation Methods Missing data Mountains Precipitation Rain Rain and rainfall rainfall Time series Winter |
title | A Comparison of Different Methods for Rainfall Imputation: A Galician Case Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Different%20Methods%20for%20Rainfall%20Imputation:%20A%20Galician%20Case%20Study&rft.jtitle=Applied%20sciences&rft.au=Vidal-Paz,%20Jos%C3%A9&rft.date=2023-11-01&rft.volume=13&rft.issue=22&rft.spage=12260&rft.pages=12260-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app132212260&rft_dat=%3Cgale_doaj_%3EA774316924%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-17e8f7549fe404dcfc247f870c4e3c53d84b76bed9fe612b7695783a0aaca4923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892975129&rft_id=info:pmid/&rft_galeid=A774316924&rfr_iscdi=true |