Loading…
Palladium Phthalocyanine Nanowire-Based Highly Sensitive Sensors for NO2(g) Detection
Palladium phthalocyanine (PdPc) nanowires (NWs) were developed to achieve the gas sensing of NO2 in the sub-parts-per-million (ppm) range. Non-substituted metal phthalocyanine are well known for their p-type semiconducting behavior, which is responsible for its gas-sensing capabilities. Nanofabricat...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-03, Vol.24 (6), p.1819 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Palladium phthalocyanine (PdPc) nanowires (NWs) were developed to achieve the gas sensing of NO2 in the sub-parts-per-million (ppm) range. Non-substituted metal phthalocyanine are well known for their p-type semiconducting behavior, which is responsible for its gas-sensing capabilities. Nanofabrication of the PdPc NWs was performed by physical vapor deposition (PVD) on an interdigitated gold electrode (IDE). The coordination of palladium in the structure was confirmed with UV–Vis spectroscopy. Gas-sensing experiments for NO2 detection were undertaken at different sensed gas concentrations from 4 ppm to 0.5 ppm at room temperature. In this work, the responses at different gas concentrations are reported. In addition, structural studies of the PdPc NWs with scanning electron microscopy (SEM) and electron-dispersive X-ray diffraction (EDS) are shown. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24061819 |