Loading…
Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering
Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional m...
Saved in:
Published in: | Nano select 2022-09, Vol.3 (9), p.1344-1353 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63 |
container_end_page | 1353 |
container_issue | 9 |
container_start_page | 1344 |
container_title | Nano select |
container_volume | 3 |
creator | Segervald, Jonas Boulanger, Nicolas Salh, Roushdey Jia, Xueen Wågberg, Thomas |
description | Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF > 105 over large surfaces.
We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things.
A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. |
doi_str_mv | 10.1002/nano.202200010 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6456bf8567464db3bab2ceb1197f5478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6456bf8567464db3bab2ceb1197f5478</doaj_id><sourcerecordid>2890706765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhyMEElXbK2dLnLPYjmMnx1X5V6lqEQKu1tgZt1k58WInWuXWR-AZeRK8TSlw4mRr9P0-z3iK4hWjG0YpfzPCGDacck4pZfRZccJl05SCMvb8r_vL4jylXUZ4zZhq2Ukxf_KQhjD2lgw4QZqjA4sEUurThB0xC5nuMA7g_UL6YR_78VjeB78MGMnx2Z_3Pw7oPYEYYSEuRPLbguMdjDbjn2GAkSQL04TZcHtWvHDgE54_nqfF1_fvvlx8LK9uPlxebK9KWwlJy6oSVhigjelaXknXNko4aWVFFa1Fa1Earjo04IRQXS2lqxojOHWKSctQVqfF5ertAux0bn6AuOgAvX4ohHirIU699ailqKVxTS2VkKIzlQHDLRrGWuVqoZrsKldXOuB-Nv_Y3vbftg-2eZg1p6xiLPOvV34fw_cZ06R3YY5jHlfzps0TSCXrTG1WysaQUkT35GVUHzerj1-snzabA-0aOPQel__Q-np7ffMn-wssA6mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890706765</pqid></control><display><type>article</type><title>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Segervald, Jonas ; Boulanger, Nicolas ; Salh, Roushdey ; Jia, Xueen ; Wågberg, Thomas</creator><creatorcontrib>Segervald, Jonas ; Boulanger, Nicolas ; Salh, Roushdey ; Jia, Xueen ; Wågberg, Thomas</creatorcontrib><description>Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF > 105 over large surfaces.
We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things.
A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.</description><identifier>ISSN: 2688-4011</identifier><identifier>EISSN: 2688-4011</identifier><identifier>DOI: 10.1002/nano.202200010</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Arrays ; Density ; Electric field strength ; Electromagnetic fields ; Finite element method ; Free electrons ; Gold ; Imprinted polymers ; Internet of Things ; Ion beams ; Metasurfaces ; Morphology ; nano-well array ; nanoimprinting ; nanotrenches ; Photovoltaic cells ; plasmonic metasurface ; Plasmonics ; Polymethyl methacrylate ; Portable equipment ; Raman spectra ; Scanning electron microscopy ; Sensors ; SERS ; Substrates ; Visible spectrum</subject><ispartof>Nano select, 2022-09, Vol.3 (9), p.1344-1353</ispartof><rights>2022 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnano.202200010$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890706765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,11541,25731,27901,27902,36989,44566,46027,46451</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-201311$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Segervald, Jonas</creatorcontrib><creatorcontrib>Boulanger, Nicolas</creatorcontrib><creatorcontrib>Salh, Roushdey</creatorcontrib><creatorcontrib>Jia, Xueen</creatorcontrib><creatorcontrib>Wågberg, Thomas</creatorcontrib><title>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</title><title>Nano select</title><description>Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF > 105 over large surfaces.
We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things.
A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.</description><subject>Arrays</subject><subject>Density</subject><subject>Electric field strength</subject><subject>Electromagnetic fields</subject><subject>Finite element method</subject><subject>Free electrons</subject><subject>Gold</subject><subject>Imprinted polymers</subject><subject>Internet of Things</subject><subject>Ion beams</subject><subject>Metasurfaces</subject><subject>Morphology</subject><subject>nano-well array</subject><subject>nanoimprinting</subject><subject>nanotrenches</subject><subject>Photovoltaic cells</subject><subject>plasmonic metasurface</subject><subject>Plasmonics</subject><subject>Polymethyl methacrylate</subject><subject>Portable equipment</subject><subject>Raman spectra</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>SERS</subject><subject>Substrates</subject><subject>Visible spectrum</subject><issn>2688-4011</issn><issn>2688-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9u1DAQhyMEElXbK2dLnLPYjmMnx1X5V6lqEQKu1tgZt1k58WInWuXWR-AZeRK8TSlw4mRr9P0-z3iK4hWjG0YpfzPCGDacck4pZfRZccJl05SCMvb8r_vL4jylXUZ4zZhq2Ukxf_KQhjD2lgw4QZqjA4sEUurThB0xC5nuMA7g_UL6YR_78VjeB78MGMnx2Z_3Pw7oPYEYYSEuRPLbguMdjDbjn2GAkSQL04TZcHtWvHDgE54_nqfF1_fvvlx8LK9uPlxebK9KWwlJy6oSVhigjelaXknXNko4aWVFFa1Fa1Earjo04IRQXS2lqxojOHWKSctQVqfF5ertAux0bn6AuOgAvX4ohHirIU699ailqKVxTS2VkKIzlQHDLRrGWuVqoZrsKldXOuB-Nv_Y3vbftg-2eZg1p6xiLPOvV34fw_cZ06R3YY5jHlfzps0TSCXrTG1WysaQUkT35GVUHzerj1-snzabA-0aOPQel__Q-np7ffMn-wssA6mg</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Segervald, Jonas</creator><creator>Boulanger, Nicolas</creator><creator>Salh, Roushdey</creator><creator>Jia, Xueen</creator><creator>Wågberg, Thomas</creator><general>John Wiley & Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>202209</creationdate><title>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</title><author>Segervald, Jonas ; Boulanger, Nicolas ; Salh, Roushdey ; Jia, Xueen ; Wågberg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Density</topic><topic>Electric field strength</topic><topic>Electromagnetic fields</topic><topic>Finite element method</topic><topic>Free electrons</topic><topic>Gold</topic><topic>Imprinted polymers</topic><topic>Internet of Things</topic><topic>Ion beams</topic><topic>Metasurfaces</topic><topic>Morphology</topic><topic>nano-well array</topic><topic>nanoimprinting</topic><topic>nanotrenches</topic><topic>Photovoltaic cells</topic><topic>plasmonic metasurface</topic><topic>Plasmonics</topic><topic>Polymethyl methacrylate</topic><topic>Portable equipment</topic><topic>Raman spectra</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>SERS</topic><topic>Substrates</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segervald, Jonas</creatorcontrib><creatorcontrib>Boulanger, Nicolas</creatorcontrib><creatorcontrib>Salh, Roushdey</creatorcontrib><creatorcontrib>Jia, Xueen</creatorcontrib><creatorcontrib>Wågberg, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano select</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segervald, Jonas</au><au>Boulanger, Nicolas</au><au>Salh, Roushdey</au><au>Jia, Xueen</au><au>Wågberg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</atitle><jtitle>Nano select</jtitle><date>2022-09</date><risdate>2022</risdate><volume>3</volume><issue>9</issue><spage>1344</spage><epage>1353</epage><pages>1344-1353</pages><issn>2688-4011</issn><eissn>2688-4011</eissn><abstract>Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF > 105 over large surfaces.
We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things.
A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nano.202200010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-4011 |
ispartof | Nano select, 2022-09, Vol.3 (9), p.1344-1353 |
issn | 2688-4011 2688-4011 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6456bf8567464db3bab2ceb1197f5478 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Arrays Density Electric field strength Electromagnetic fields Finite element method Free electrons Gold Imprinted polymers Internet of Things Ion beams Metasurfaces Morphology nano-well array nanoimprinting nanotrenches Photovoltaic cells plasmonic metasurface Plasmonics Polymethyl methacrylate Portable equipment Raman spectra Scanning electron microscopy Sensors SERS Substrates Visible spectrum |
title | Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20metasurface%20assisted%20by%20thermally%20imprinted%20polymer%20nano%E2%80%90well%20array%20for%20surface%20enhanced%20Raman%20scattering&rft.jtitle=Nano%20select&rft.au=Segervald,%20Jonas&rft.date=2022-09&rft.volume=3&rft.issue=9&rft.spage=1344&rft.epage=1353&rft.pages=1344-1353&rft.issn=2688-4011&rft.eissn=2688-4011&rft_id=info:doi/10.1002/nano.202200010&rft_dat=%3Cproquest_doaj_%3E2890706765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890706765&rft_id=info:pmid/&rfr_iscdi=true |