Loading…

Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering

Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional m...

Full description

Saved in:
Bibliographic Details
Published in:Nano select 2022-09, Vol.3 (9), p.1344-1353
Main Authors: Segervald, Jonas, Boulanger, Nicolas, Salh, Roushdey, Jia, Xueen, Wågberg, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63
container_end_page 1353
container_issue 9
container_start_page 1344
container_title Nano select
container_volume 3
creator Segervald, Jonas
Boulanger, Nicolas
Salh, Roushdey
Jia, Xueen
Wågberg, Thomas
description Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF > 105 over large surfaces. We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things. A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.
doi_str_mv 10.1002/nano.202200010
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6456bf8567464db3bab2ceb1197f5478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6456bf8567464db3bab2ceb1197f5478</doaj_id><sourcerecordid>2890706765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhyMEElXbK2dLnLPYjmMnx1X5V6lqEQKu1tgZt1k58WInWuXWR-AZeRK8TSlw4mRr9P0-z3iK4hWjG0YpfzPCGDacck4pZfRZccJl05SCMvb8r_vL4jylXUZ4zZhq2Ukxf_KQhjD2lgw4QZqjA4sEUurThB0xC5nuMA7g_UL6YR_78VjeB78MGMnx2Z_3Pw7oPYEYYSEuRPLbguMdjDbjn2GAkSQL04TZcHtWvHDgE54_nqfF1_fvvlx8LK9uPlxebK9KWwlJy6oSVhigjelaXknXNko4aWVFFa1Fa1Earjo04IRQXS2lqxojOHWKSctQVqfF5ertAux0bn6AuOgAvX4ohHirIU699ailqKVxTS2VkKIzlQHDLRrGWuVqoZrsKldXOuB-Nv_Y3vbftg-2eZg1p6xiLPOvV34fw_cZ06R3YY5jHlfzps0TSCXrTG1WysaQUkT35GVUHzerj1-snzabA-0aOPQel__Q-np7ffMn-wssA6mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890706765</pqid></control><display><type>article</type><title>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Segervald, Jonas ; Boulanger, Nicolas ; Salh, Roushdey ; Jia, Xueen ; Wågberg, Thomas</creator><creatorcontrib>Segervald, Jonas ; Boulanger, Nicolas ; Salh, Roushdey ; Jia, Xueen ; Wågberg, Thomas</creatorcontrib><description>Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF &gt; 105 over large surfaces. We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things. A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.</description><identifier>ISSN: 2688-4011</identifier><identifier>EISSN: 2688-4011</identifier><identifier>DOI: 10.1002/nano.202200010</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Arrays ; Density ; Electric field strength ; Electromagnetic fields ; Finite element method ; Free electrons ; Gold ; Imprinted polymers ; Internet of Things ; Ion beams ; Metasurfaces ; Morphology ; nano-well array ; nanoimprinting ; nanotrenches ; Photovoltaic cells ; plasmonic metasurface ; Plasmonics ; Polymethyl methacrylate ; Portable equipment ; Raman spectra ; Scanning electron microscopy ; Sensors ; SERS ; Substrates ; Visible spectrum</subject><ispartof>Nano select, 2022-09, Vol.3 (9), p.1344-1353</ispartof><rights>2022 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnano.202200010$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890706765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,11541,25731,27901,27902,36989,44566,46027,46451</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-201311$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Segervald, Jonas</creatorcontrib><creatorcontrib>Boulanger, Nicolas</creatorcontrib><creatorcontrib>Salh, Roushdey</creatorcontrib><creatorcontrib>Jia, Xueen</creatorcontrib><creatorcontrib>Wågberg, Thomas</creatorcontrib><title>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</title><title>Nano select</title><description>Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF &gt; 105 over large surfaces. We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things. A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.</description><subject>Arrays</subject><subject>Density</subject><subject>Electric field strength</subject><subject>Electromagnetic fields</subject><subject>Finite element method</subject><subject>Free electrons</subject><subject>Gold</subject><subject>Imprinted polymers</subject><subject>Internet of Things</subject><subject>Ion beams</subject><subject>Metasurfaces</subject><subject>Morphology</subject><subject>nano-well array</subject><subject>nanoimprinting</subject><subject>nanotrenches</subject><subject>Photovoltaic cells</subject><subject>plasmonic metasurface</subject><subject>Plasmonics</subject><subject>Polymethyl methacrylate</subject><subject>Portable equipment</subject><subject>Raman spectra</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>SERS</subject><subject>Substrates</subject><subject>Visible spectrum</subject><issn>2688-4011</issn><issn>2688-4011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9u1DAQhyMEElXbK2dLnLPYjmMnx1X5V6lqEQKu1tgZt1k58WInWuXWR-AZeRK8TSlw4mRr9P0-z3iK4hWjG0YpfzPCGDacck4pZfRZccJl05SCMvb8r_vL4jylXUZ4zZhq2Ukxf_KQhjD2lgw4QZqjA4sEUurThB0xC5nuMA7g_UL6YR_78VjeB78MGMnx2Z_3Pw7oPYEYYSEuRPLbguMdjDbjn2GAkSQL04TZcHtWvHDgE54_nqfF1_fvvlx8LK9uPlxebK9KWwlJy6oSVhigjelaXknXNko4aWVFFa1Fa1Earjo04IRQXS2lqxojOHWKSctQVqfF5ertAux0bn6AuOgAvX4ohHirIU699ailqKVxTS2VkKIzlQHDLRrGWuVqoZrsKldXOuB-Nv_Y3vbftg-2eZg1p6xiLPOvV34fw_cZ06R3YY5jHlfzps0TSCXrTG1WysaQUkT35GVUHzerj1-snzabA-0aOPQel__Q-np7ffMn-wssA6mg</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Segervald, Jonas</creator><creator>Boulanger, Nicolas</creator><creator>Salh, Roushdey</creator><creator>Jia, Xueen</creator><creator>Wågberg, Thomas</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>202209</creationdate><title>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</title><author>Segervald, Jonas ; Boulanger, Nicolas ; Salh, Roushdey ; Jia, Xueen ; Wågberg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Density</topic><topic>Electric field strength</topic><topic>Electromagnetic fields</topic><topic>Finite element method</topic><topic>Free electrons</topic><topic>Gold</topic><topic>Imprinted polymers</topic><topic>Internet of Things</topic><topic>Ion beams</topic><topic>Metasurfaces</topic><topic>Morphology</topic><topic>nano-well array</topic><topic>nanoimprinting</topic><topic>nanotrenches</topic><topic>Photovoltaic cells</topic><topic>plasmonic metasurface</topic><topic>Plasmonics</topic><topic>Polymethyl methacrylate</topic><topic>Portable equipment</topic><topic>Raman spectra</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>SERS</topic><topic>Substrates</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segervald, Jonas</creatorcontrib><creatorcontrib>Boulanger, Nicolas</creatorcontrib><creatorcontrib>Salh, Roushdey</creatorcontrib><creatorcontrib>Jia, Xueen</creatorcontrib><creatorcontrib>Wågberg, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano select</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segervald, Jonas</au><au>Boulanger, Nicolas</au><au>Salh, Roushdey</au><au>Jia, Xueen</au><au>Wågberg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering</atitle><jtitle>Nano select</jtitle><date>2022-09</date><risdate>2022</risdate><volume>3</volume><issue>9</issue><spage>1344</spage><epage>1353</epage><pages>1344-1353</pages><issn>2688-4011</issn><eissn>2688-4011</eissn><abstract>Plasmonic nanometasurfaces/nanostructures possess strong electromagnetic field enhancement caused by resonant oscillations of free electrons, and has been extensively applied in biosensing, nanophotonic and photocatalysis. However, fabrication of uniform nanostructured metasurfaces by conventional methods is complicated and costly, which mitigates a wide‐spread use of this technique in ubiquitous applications. Here, we present a facile and scalable method to fabricate an active nanotrench plasmonic gold substrate. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays. The plasmonic metasurface is optimized to maximize the density of the nano‐trenches by tuning the substrate material, imprinting procedure and film deposition. We show that the surface Raman enhancement due to plasmonic resonances correlates well with trench density and reach a meritorious enhancement factor of EF &gt; 105 over large surfaces. We further show that the electric field strength at the nanotrench features are well explained by finite element method simulations using COMSOL Multiphysics. The plasmonic substrate is transparent in the visible spectrum and conductive. In combination with a scalable bottom‐up fabrication the plasmonic metasurface opens up for a wider use of the sensitive and reliable SERS substrate in applications such as portable sensing devices and for future internet of things. A scalable method to fabricate an SERS active nanotrench plasmonic gold substrate is presented. The surface comprises sub‐10 nm plasmonic nanogaps and their formation is assisted by a pre‐fabrication of nano‐imprinted polymer nano‐well arrays.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nano.202200010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-4011
ispartof Nano select, 2022-09, Vol.3 (9), p.1344-1353
issn 2688-4011
2688-4011
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6456bf8567464db3bab2ceb1197f5478
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Arrays
Density
Electric field strength
Electromagnetic fields
Finite element method
Free electrons
Gold
Imprinted polymers
Internet of Things
Ion beams
Metasurfaces
Morphology
nano-well array
nanoimprinting
nanotrenches
Photovoltaic cells
plasmonic metasurface
Plasmonics
Polymethyl methacrylate
Portable equipment
Raman spectra
Scanning electron microscopy
Sensors
SERS
Substrates
Visible spectrum
title Plasmonic metasurface assisted by thermally imprinted polymer nano‐well array for surface enhanced Raman scattering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20metasurface%20assisted%20by%20thermally%20imprinted%20polymer%20nano%E2%80%90well%20array%20for%20surface%20enhanced%20Raman%20scattering&rft.jtitle=Nano%20select&rft.au=Segervald,%20Jonas&rft.date=2022-09&rft.volume=3&rft.issue=9&rft.spage=1344&rft.epage=1353&rft.pages=1344-1353&rft.issn=2688-4011&rft.eissn=2688-4011&rft_id=info:doi/10.1002/nano.202200010&rft_dat=%3Cproquest_doaj_%3E2890706765%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3460-334c4ba08bd9236f9874f6c63070549ce6b27debaf447d566f38b420f716c1e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890706765&rft_id=info:pmid/&rfr_iscdi=true