Loading…
Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms
Three different silver nanoprisms (AgNPrs) were combined and used as light-trapping materials in organic solar cells (OSCs). These mixed AgNPrs (M-AgNPrs) increased the photocarrier generation in the OSCs due to the broadband absorption, which was attributed to mutual multiple plasmonic excitations...
Saved in:
Published in: | Journal of science. Advanced materials and devices 2021-06, Vol.6 (2), p.264-270 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three different silver nanoprisms (AgNPrs) were combined and used as light-trapping materials in organic solar cells (OSCs). These mixed AgNPrs (M-AgNPrs) increased the photocarrier generation in the OSCs due to the broadband absorption, which was attributed to mutual multiple plasmonic excitations covering the entire visible light region. The M-AgNPrs were incorporated into a poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) hole-transport layer in the OSCs. The UV–vis spectra, atomic force microscope images and current density versus voltage curves of the fabricated devices were recorded at different loading concentrations of the M-AgNPrs. Finite-difference time-domain simulation, impedance spectroscopy, and measurement of incident photon-to-current efficiency of the devices confirmed the effect of the multiple plasmonic excitations. The results suggest that, in an optimum condition, the efficiency of the OSCs loaded with M-AgNPrs was 7.9% higher than the reference OSC. |
---|---|
ISSN: | 2468-2179 2468-2179 |
DOI: | 10.1016/j.jsamd.2021.02.007 |