Loading…
A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia
This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Ma...
Saved in:
Published in: | Healthcare analytics (New York, N.Y.) N.Y.), 2022-11, Vol.2, p.100080-100080, Article 100080 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13 |
container_end_page | 100080 |
container_issue | |
container_start_page | 100080 |
container_title | Healthcare analytics (New York, N.Y.) |
container_volume | 2 |
creator | Sharin, Siti Nurhidayah Radzali, Mohamad Khairil Sani, Muhamad Shirwan Abdullah |
description | This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021. The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in highly populated states.
•This study correlated and visualises pandemic spread via Spearman rank coefficients of network analysis (NA).•The study also predicted the cumulative number of confirmed and death cases via support vector regression (SVR).•The NA indicated increasing connectivity between different states in Malaysia.•The SVR model predicted future cases and deaths in Malaysia.•The Malaysian health authorities used the NA and SVR results for preventive measures in populated states. |
doi_str_mv | 10.1016/j.health.2022.100080 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_64631c6e3cf34904a4314c0160da9caa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772442522000338</els_id><doaj_id>oai_doaj_org_article_64631c6e3cf34904a4314c0160da9caa</doaj_id><sourcerecordid>2844086392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEolXpP0DIRy679Ve-OCBVC5SVinoBrtbEnmy8zcbBdhZV4sfjbZaq5QC--OudZ-yZN8teM7pklBUX22WH0MduySnn6YjSij7LTnlZ8oWUPH_-aH2SnYewTRJeJWFJX2Ynosw5LTg_zX5dkgHjT-dvCQzQ3wUb0sKQMI2j85HsUUfniceNxxCsGwiMo3egOwykTTd7GybobbDD5j5w9Gisjodt7JCsbr6vPyxYTdwUG49wS-xAvkAPKRO8yl600Ac8P85n2bdPH7-uPi-ub67Wq8vrhZZS0oUxBW9NyyoqaVlIjS00QIuqkYwKzlnJcpNG0bbQ8hK1rmpTG1HltMpl1TBxlq1nrnGwVaO3O_B3yoFV9wfObxT4aHWPqpCFYLpAoVshaypBCiZ1Kjk1UGuAxHo_s8ap2aHROEQP_RPo05vBdmrj9qrmtShrmgBvjwDvfkwYotrZoLHvYUA3BcWr9OeqEDVPUjlLtXcheGwf0jCqDj5QWzX7QB18oGYfpLA3j5_4EPSn60nw7i-uthFi6m56se3_Rz8WAFPH9ha9CtrioFPbfTJLKqn9N-A3zvva0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844086392</pqid></control><display><type>article</type><title>A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia</title><source>ScienceDirect Journals</source><creator>Sharin, Siti Nurhidayah ; Radzali, Mohamad Khairil ; Sani, Muhamad Shirwan Abdullah</creator><creatorcontrib>Sharin, Siti Nurhidayah ; Radzali, Mohamad Khairil ; Sani, Muhamad Shirwan Abdullah</creatorcontrib><description>This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021. The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in highly populated states.
•This study correlated and visualises pandemic spread via Spearman rank coefficients of network analysis (NA).•The study also predicted the cumulative number of confirmed and death cases via support vector regression (SVR).•The NA indicated increasing connectivity between different states in Malaysia.•The SVR model predicted future cases and deaths in Malaysia.•The Malaysian health authorities used the NA and SVR results for preventive measures in populated states.</description><identifier>ISSN: 2772-4425</identifier><identifier>EISSN: 2772-4425</identifier><identifier>DOI: 10.1016/j.health.2022.100080</identifier><identifier>PMID: 37520622</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial intelligence ; Coronavirus ; COVID-19 ; Network analysis ; Support vector regression</subject><ispartof>Healthcare analytics (New York, N.Y.), 2022-11, Vol.2, p.100080-100080, Article 100080</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13</citedby><cites>FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13</cites><orcidid>0000-0002-8202-1491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2772442522000338$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37520622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharin, Siti Nurhidayah</creatorcontrib><creatorcontrib>Radzali, Mohamad Khairil</creatorcontrib><creatorcontrib>Sani, Muhamad Shirwan Abdullah</creatorcontrib><title>A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia</title><title>Healthcare analytics (New York, N.Y.)</title><addtitle>Healthc Anal (N Y)</addtitle><description>This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021. The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in highly populated states.
•This study correlated and visualises pandemic spread via Spearman rank coefficients of network analysis (NA).•The study also predicted the cumulative number of confirmed and death cases via support vector regression (SVR).•The NA indicated increasing connectivity between different states in Malaysia.•The SVR model predicted future cases and deaths in Malaysia.•The Malaysian health authorities used the NA and SVR results for preventive measures in populated states.</description><subject>Artificial intelligence</subject><subject>Coronavirus</subject><subject>COVID-19</subject><subject>Network analysis</subject><subject>Support vector regression</subject><issn>2772-4425</issn><issn>2772-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkk1v1DAQhiMEolXpP0DIRy679Ve-OCBVC5SVinoBrtbEnmy8zcbBdhZV4sfjbZaq5QC--OudZ-yZN8teM7pklBUX22WH0MduySnn6YjSij7LTnlZ8oWUPH_-aH2SnYewTRJeJWFJX2Ynosw5LTg_zX5dkgHjT-dvCQzQ3wUb0sKQMI2j85HsUUfniceNxxCsGwiMo3egOwykTTd7GybobbDD5j5w9Gisjodt7JCsbr6vPyxYTdwUG49wS-xAvkAPKRO8yl600Ac8P85n2bdPH7-uPi-ub67Wq8vrhZZS0oUxBW9NyyoqaVlIjS00QIuqkYwKzlnJcpNG0bbQ8hK1rmpTG1HltMpl1TBxlq1nrnGwVaO3O_B3yoFV9wfObxT4aHWPqpCFYLpAoVshaypBCiZ1Kjk1UGuAxHo_s8ap2aHROEQP_RPo05vBdmrj9qrmtShrmgBvjwDvfkwYotrZoLHvYUA3BcWr9OeqEDVPUjlLtXcheGwf0jCqDj5QWzX7QB18oGYfpLA3j5_4EPSn60nw7i-uthFi6m56se3_Rz8WAFPH9ha9CtrioFPbfTJLKqn9N-A3zvva0g</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Sharin, Siti Nurhidayah</creator><creator>Radzali, Mohamad Khairil</creator><creator>Sani, Muhamad Shirwan Abdullah</creator><general>Elsevier Inc</general><general>The Author(s). Published by Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8202-1491</orcidid></search><sort><creationdate>20221101</creationdate><title>A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia</title><author>Sharin, Siti Nurhidayah ; Radzali, Mohamad Khairil ; Sani, Muhamad Shirwan Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Coronavirus</topic><topic>COVID-19</topic><topic>Network analysis</topic><topic>Support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharin, Siti Nurhidayah</creatorcontrib><creatorcontrib>Radzali, Mohamad Khairil</creatorcontrib><creatorcontrib>Sani, Muhamad Shirwan Abdullah</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Healthcare analytics (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharin, Siti Nurhidayah</au><au>Radzali, Mohamad Khairil</au><au>Sani, Muhamad Shirwan Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia</atitle><jtitle>Healthcare analytics (New York, N.Y.)</jtitle><addtitle>Healthc Anal (N Y)</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>2</volume><spage>100080</spage><epage>100080</epage><pages>100080-100080</pages><artnum>100080</artnum><issn>2772-4425</issn><eissn>2772-4425</eissn><abstract>This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021. The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in highly populated states.
•This study correlated and visualises pandemic spread via Spearman rank coefficients of network analysis (NA).•The study also predicted the cumulative number of confirmed and death cases via support vector regression (SVR).•The NA indicated increasing connectivity between different states in Malaysia.•The SVR model predicted future cases and deaths in Malaysia.•The Malaysian health authorities used the NA and SVR results for preventive measures in populated states.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37520622</pmid><doi>10.1016/j.health.2022.100080</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8202-1491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2772-4425 |
ispartof | Healthcare analytics (New York, N.Y.), 2022-11, Vol.2, p.100080-100080, Article 100080 |
issn | 2772-4425 2772-4425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_64631c6e3cf34904a4314c0160da9caa |
source | ScienceDirect Journals |
subjects | Artificial intelligence Coronavirus COVID-19 Network analysis Support vector regression |
title | A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20network%20analysis%20and%20support%20vector%20regression%20approaches%20for%20visualising%20and%20predicting%20the%20COVID-19%20outbreak%20in%20Malaysia&rft.jtitle=Healthcare%20analytics%20(New%20York,%20N.Y.)&rft.au=Sharin,%20Siti%20Nurhidayah&rft.date=2022-11-01&rft.volume=2&rft.spage=100080&rft.epage=100080&rft.pages=100080-100080&rft.artnum=100080&rft.issn=2772-4425&rft.eissn=2772-4425&rft_id=info:doi/10.1016/j.health.2022.100080&rft_dat=%3Cproquest_doaj_%3E2844086392%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4440-dd62fdf18040764cefaba068b4103221715dddd6ffaf27ecc89d9d38508548b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2844086392&rft_id=info:pmid/37520622&rfr_iscdi=true |