Loading…

Mobility overestimation due to gated contacts in organic field-effect transistors

Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. Howe...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2016-03, Vol.7 (1), p.10908-10908, Article 10908
Main Authors: Bittle, Emily G., Basham, James I., Jackson, Thomas N., Jurchescu, Oana D., Gundlach, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83
cites cdi_FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83
container_end_page 10908
container_issue 1
container_start_page 10908
container_title Nature communications
container_volume 7
creator Bittle, Emily G.
Basham, James I.
Jackson, Thomas N.
Jurchescu, Oana D.
Gundlach, David J.
description Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (>40 cm 2  V −1  s −1 ), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. Charge mobility, extracted from current–voltage curves, is an important parameter for evaluating the performance of organic field-effect transistors. Bittle et al . show that charge mobility can be overestimated by one order of magnitude due to the gate bias dependence of the charge injection process.
doi_str_mv 10.1038/ncomms10908
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6467caace8024de1b053a2a0bc33e81b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6467caace8024de1b053a2a0bc33e81b</doaj_id><sourcerecordid>1772837343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83</originalsourceid><addsrcrecordid>eNptkctrFTEUhwdRbKlduZeAG0FH87p5bIRSfBQqIug65HHmmstMUpNMof-9qbeWWzGbhJyPL7-cMwzPCX5LMFPvks_LUgnWWD0ajinmZCSSsscH56PhtNYd7otpojh_OhxRoQWhkhwP375kF-fYblC-hgK1xcW2mBMKK6CW0dY2CMjn1KxvFcWEctnaFD2aIsxhhGkC31ArNtVYWy712fBksnOF07v9ZPjx8cP388_j5ddPF-dnl6PfSNVG5RyWwjHtlJqwV4wQEWzPpDUXOOgNZ1YEbqlwWsPktZqUExQLpmXATrGT4WLvDdnuzFXpwcuNyTaaPxc9prGlRT-DEVxIb60HhSkPQBzeMEstdp4xUMR11_u962p1CwQPqX9ofiB9WEnxp9nma8OlpprLLnh1Jyj519rbaJZYPcyzTZDXaoiUVDHJOOvoy3_QXV5L6q26pfrAlJS8U6_3lC-51gLTfRiCze3kzcHkO_3iMP89-3fOHXizB2ovpS2Ug0f_4_sNsBa5sw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771728774</pqid></control><display><type>article</type><title>Mobility overestimation due to gated contacts in organic field-effect transistors</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bittle, Emily G. ; Basham, James I. ; Jackson, Thomas N. ; Jurchescu, Oana D. ; Gundlach, David J.</creator><creatorcontrib>Bittle, Emily G. ; Basham, James I. ; Jackson, Thomas N. ; Jurchescu, Oana D. ; Gundlach, David J.</creatorcontrib><description>Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (&gt;40 cm 2  V −1  s −1 ), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. Charge mobility, extracted from current–voltage curves, is an important parameter for evaluating the performance of organic field-effect transistors. Bittle et al . show that charge mobility can be overestimated by one order of magnitude due to the gate bias dependence of the charge injection process.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms10908</identifier><identifier>PMID: 26961271</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/766/25 ; Dielectric Spectroscopy ; Humanities and Social Sciences ; Materials Testing ; multidisciplinary ; Naphthacenes - chemistry ; Science ; Science (multidisciplinary) ; Silicon Dioxide - chemistry ; Transistors, Electronic</subject><ispartof>Nature communications, 2016-03, Vol.7 (1), p.10908-10908, Article 10908</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Mar 2016</rights><rights>Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83</citedby><cites>FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1771728774/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1771728774?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26961271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bittle, Emily G.</creatorcontrib><creatorcontrib>Basham, James I.</creatorcontrib><creatorcontrib>Jackson, Thomas N.</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><creatorcontrib>Gundlach, David J.</creatorcontrib><title>Mobility overestimation due to gated contacts in organic field-effect transistors</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (&gt;40 cm 2  V −1  s −1 ), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. Charge mobility, extracted from current–voltage curves, is an important parameter for evaluating the performance of organic field-effect transistors. Bittle et al . show that charge mobility can be overestimated by one order of magnitude due to the gate bias dependence of the charge injection process.</description><subject>639/301/119/995</subject><subject>639/766/25</subject><subject>Dielectric Spectroscopy</subject><subject>Humanities and Social Sciences</subject><subject>Materials Testing</subject><subject>multidisciplinary</subject><subject>Naphthacenes - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silicon Dioxide - chemistry</subject><subject>Transistors, Electronic</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkctrFTEUhwdRbKlduZeAG0FH87p5bIRSfBQqIug65HHmmstMUpNMof-9qbeWWzGbhJyPL7-cMwzPCX5LMFPvks_LUgnWWD0ajinmZCSSsscH56PhtNYd7otpojh_OhxRoQWhkhwP375kF-fYblC-hgK1xcW2mBMKK6CW0dY2CMjn1KxvFcWEctnaFD2aIsxhhGkC31ArNtVYWy712fBksnOF07v9ZPjx8cP388_j5ddPF-dnl6PfSNVG5RyWwjHtlJqwV4wQEWzPpDUXOOgNZ1YEbqlwWsPktZqUExQLpmXATrGT4WLvDdnuzFXpwcuNyTaaPxc9prGlRT-DEVxIb60HhSkPQBzeMEstdp4xUMR11_u962p1CwQPqX9ofiB9WEnxp9nma8OlpprLLnh1Jyj519rbaJZYPcyzTZDXaoiUVDHJOOvoy3_QXV5L6q26pfrAlJS8U6_3lC-51gLTfRiCze3kzcHkO_3iMP89-3fOHXizB2ovpS2Ug0f_4_sNsBa5sw</recordid><startdate>20160310</startdate><enddate>20160310</enddate><creator>Bittle, Emily G.</creator><creator>Basham, James I.</creator><creator>Jackson, Thomas N.</creator><creator>Jurchescu, Oana D.</creator><creator>Gundlach, David J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160310</creationdate><title>Mobility overestimation due to gated contacts in organic field-effect transistors</title><author>Bittle, Emily G. ; Basham, James I. ; Jackson, Thomas N. ; Jurchescu, Oana D. ; Gundlach, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301/119/995</topic><topic>639/766/25</topic><topic>Dielectric Spectroscopy</topic><topic>Humanities and Social Sciences</topic><topic>Materials Testing</topic><topic>multidisciplinary</topic><topic>Naphthacenes - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silicon Dioxide - chemistry</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bittle, Emily G.</creatorcontrib><creatorcontrib>Basham, James I.</creatorcontrib><creatorcontrib>Jackson, Thomas N.</creatorcontrib><creatorcontrib>Jurchescu, Oana D.</creatorcontrib><creatorcontrib>Gundlach, David J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bittle, Emily G.</au><au>Basham, James I.</au><au>Jackson, Thomas N.</au><au>Jurchescu, Oana D.</au><au>Gundlach, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility overestimation due to gated contacts in organic field-effect transistors</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2016-03-10</date><risdate>2016</risdate><volume>7</volume><issue>1</issue><spage>10908</spage><epage>10908</epage><pages>10908-10908</pages><artnum>10908</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Parameters used to describe the electrical properties of organic field-effect transistors, such as mobility and threshold voltage, are commonly extracted from measured current–voltage characteristics and interpreted by using the classical metal oxide–semiconductor field-effect transistor model. However, in recent reports of devices with ultra-high mobility (&gt;40 cm 2  V −1  s −1 ), the device characteristics deviate from this idealized model and show an abrupt turn-on in the drain current when measured as a function of gate voltage. In order to investigate this phenomenon, here we report on single crystal rubrene transistors intentionally fabricated to exhibit an abrupt turn-on. We disentangle the channel properties from the contact resistance by using impedance spectroscopy and show that the current in such devices is governed by a gate bias dependence of the contact resistance. As a result, extracted mobility values from d.c. current–voltage characterization are overestimated by one order of magnitude or more. Charge mobility, extracted from current–voltage curves, is an important parameter for evaluating the performance of organic field-effect transistors. Bittle et al . show that charge mobility can be overestimated by one order of magnitude due to the gate bias dependence of the charge injection process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26961271</pmid><doi>10.1038/ncomms10908</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2016-03, Vol.7 (1), p.10908-10908, Article 10908
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6467caace8024de1b053a2a0bc33e81b
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/119/995
639/766/25
Dielectric Spectroscopy
Humanities and Social Sciences
Materials Testing
multidisciplinary
Naphthacenes - chemistry
Science
Science (multidisciplinary)
Silicon Dioxide - chemistry
Transistors, Electronic
title Mobility overestimation due to gated contacts in organic field-effect transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20overestimation%20due%20to%20gated%20contacts%20in%20organic%20field-effect%20transistors&rft.jtitle=Nature%20communications&rft.au=Bittle,%20Emily%20G.&rft.date=2016-03-10&rft.volume=7&rft.issue=1&rft.spage=10908&rft.epage=10908&rft.pages=10908-10908&rft.artnum=10908&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms10908&rft_dat=%3Cproquest_doaj_%3E1772837343%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c578t-8bb076b39b88f0c83116da27199460d9543a6d4a26b99efc98f8b6206397d0b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1771728774&rft_id=info:pmid/26961271&rfr_iscdi=true