Loading…

Comparison of Several Adiposity Indexes in Predicting Hypertension among Chinese Adults: Data from China Nutrition and Health Surveillance (2015-2017)

The current study is to explore the association of the Chinese visceral adiposity index (CVAI) with hypertension, and to compare the predictive power of different adiposity indexes regarding hypertension among Chinese adults aged over 45 years. A total of 99,201 participants aged over 45 years from...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2023-04, Vol.15 (9), p.2146
Main Authors: Li, Yuge, Yu, Dongmei, Yang, Yuxiang, Cheng, Xue, Piao, Wei, Guo, Qiya, Xu, Xiaoli, Zhao, Liyun, Wang, Yuying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543
cites cdi_FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543
container_end_page
container_issue 9
container_start_page 2146
container_title Nutrients
container_volume 15
creator Li, Yuge
Yu, Dongmei
Yang, Yuxiang
Cheng, Xue
Piao, Wei
Guo, Qiya
Xu, Xiaoli
Zhao, Liyun
Wang, Yuying
description The current study is to explore the association of the Chinese visceral adiposity index (CVAI) with hypertension, and to compare the predictive power of different adiposity indexes regarding hypertension among Chinese adults aged over 45 years. A total of 99,201 participants aged over 45 years from the China Nutrition and Health Surveillance 2015-2017 were included in this study. Multivariate adjusted logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) of hypertension. Multivariate adjusted restricted cubic spline analyses were applied to explore the association of adiposity indexes with hypertension. Receiver operating characteristic (ROC) analyses were used to compare the predictive powers of different adiposity indexes of hypertension. All eight adiposity indexes included in this study were positively associated with hypertension. Compared with those in the lowest quartile of the CVAI, the participants in the highest quartile showed a significantly higher risk of hypertension (OR = 3.70, 95% CI = 3.54-3.86) after multiple adjustments. The ROC analyses suggested that the CVAI was the strongest predictor of hypertension compared to other adiposity indexes in both genders. The findings supported that the CVAI could serve as a reliable and cost-effective method for early identifying hypertension risk.
doi_str_mv 10.3390/nu15092146
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_648029c063b94cf5ad28090b4837526c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749233236</galeid><doaj_id>oai_doaj_org_article_648029c063b94cf5ad28090b4837526c</doaj_id><sourcerecordid>A749233236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543</originalsourceid><addsrcrecordid>eNptkttuEzEQhlcIRKvSGx4AWeKmIKX4sPauuUFROCRSBUiFa8vrnU0c7dqp7Y3oi_C8OElpG4QteazxN7_tX1MULwm-ZEzid24kHEtKSvGkOKW4ohMhSvb00f6kOI9xjXejwpVgz4sTVpWM0hqfFr9nftjoYKN3yHfoGrYQdI-mrd34aNMtWrgWfkFE1qHvAVprknVLNL_dQEjgos11evA5NVtZBxFy6din-B591EmjLvhhf6LR1zEFm_a8a9EcdJ9W6HoMW7B9r50BdEEx4ZO8VG9eFM863Uc4v4tnxc_Pn37M5pOrb18Ws-nVxPASp4mR2YIWA9HcGEKBCkwIE1UjSmk4kaWkWuocOiYaVhktOWnqjnGuKe14yc6KxUG39XqtNsEOOtwqr63aJ3xYKh2SNT0oUdaYSoMFa2RpOq7bbKDETVmzilNhstaHg9ZmbAZoDbiUrTwSPT5xdqWWfqsIJjXmbPeaizuF4G9GiEkNNhrY2QN-jIrWTFBZccEy-vofdO3H4LJXmSK0YiWV9QO11PkH1nU-X2x2ompaZXMYo0xk6vI_VJ4tDNZ4B53N-aOCt4cCE3yMAbr7TxKsdl2pHroyw68e23KP_u1B9gda49kQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812734298</pqid></control><display><type>article</type><title>Comparison of Several Adiposity Indexes in Predicting Hypertension among Chinese Adults: Data from China Nutrition and Health Surveillance (2015-2017)</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Li, Yuge ; Yu, Dongmei ; Yang, Yuxiang ; Cheng, Xue ; Piao, Wei ; Guo, Qiya ; Xu, Xiaoli ; Zhao, Liyun ; Wang, Yuying</creator><creatorcontrib>Li, Yuge ; Yu, Dongmei ; Yang, Yuxiang ; Cheng, Xue ; Piao, Wei ; Guo, Qiya ; Xu, Xiaoli ; Zhao, Liyun ; Wang, Yuying</creatorcontrib><description>The current study is to explore the association of the Chinese visceral adiposity index (CVAI) with hypertension, and to compare the predictive power of different adiposity indexes regarding hypertension among Chinese adults aged over 45 years. A total of 99,201 participants aged over 45 years from the China Nutrition and Health Surveillance 2015-2017 were included in this study. Multivariate adjusted logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) of hypertension. Multivariate adjusted restricted cubic spline analyses were applied to explore the association of adiposity indexes with hypertension. Receiver operating characteristic (ROC) analyses were used to compare the predictive powers of different adiposity indexes of hypertension. All eight adiposity indexes included in this study were positively associated with hypertension. Compared with those in the lowest quartile of the CVAI, the participants in the highest quartile showed a significantly higher risk of hypertension (OR = 3.70, 95% CI = 3.54-3.86) after multiple adjustments. The ROC analyses suggested that the CVAI was the strongest predictor of hypertension compared to other adiposity indexes in both genders. The findings supported that the CVAI could serve as a reliable and cost-effective method for early identifying hypertension risk.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu15092146</identifier><identifier>PMID: 37432280</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Adipose tissue ; Adipose tissues ; Adiposity ; adiposity index ; Adults ; Alcohol use ; Blood pressure ; Body fat ; Body mass index ; China - epidemiology ; Chinese adult ; Cholesterol ; Comparative analysis ; Diabetes ; Diet therapy ; East Asian People ; Families &amp; family life ; Family medical history ; Female ; Health surveillance ; High density lipoprotein ; Humans ; Hypertension ; Hypertension - epidemiology ; Laboratories ; Lipoproteins ; Male ; Metabolism ; Middle age ; Middle Aged ; Multivariate analysis ; Nutrition ; nutrition surveillance ; Obesity - epidemiology ; Regression analysis ; Software ; Statistical analysis</subject><ispartof>Nutrients, 2023-04, Vol.15 (9), p.2146</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543</citedby><cites>FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543</cites><orcidid>0009-0007-4191-7009 ; 0000-0001-5491-4789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812734298/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812734298?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37432280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuge</creatorcontrib><creatorcontrib>Yu, Dongmei</creatorcontrib><creatorcontrib>Yang, Yuxiang</creatorcontrib><creatorcontrib>Cheng, Xue</creatorcontrib><creatorcontrib>Piao, Wei</creatorcontrib><creatorcontrib>Guo, Qiya</creatorcontrib><creatorcontrib>Xu, Xiaoli</creatorcontrib><creatorcontrib>Zhao, Liyun</creatorcontrib><creatorcontrib>Wang, Yuying</creatorcontrib><title>Comparison of Several Adiposity Indexes in Predicting Hypertension among Chinese Adults: Data from China Nutrition and Health Surveillance (2015-2017)</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>The current study is to explore the association of the Chinese visceral adiposity index (CVAI) with hypertension, and to compare the predictive power of different adiposity indexes regarding hypertension among Chinese adults aged over 45 years. A total of 99,201 participants aged over 45 years from the China Nutrition and Health Surveillance 2015-2017 were included in this study. Multivariate adjusted logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) of hypertension. Multivariate adjusted restricted cubic spline analyses were applied to explore the association of adiposity indexes with hypertension. Receiver operating characteristic (ROC) analyses were used to compare the predictive powers of different adiposity indexes of hypertension. All eight adiposity indexes included in this study were positively associated with hypertension. Compared with those in the lowest quartile of the CVAI, the participants in the highest quartile showed a significantly higher risk of hypertension (OR = 3.70, 95% CI = 3.54-3.86) after multiple adjustments. The ROC analyses suggested that the CVAI was the strongest predictor of hypertension compared to other adiposity indexes in both genders. The findings supported that the CVAI could serve as a reliable and cost-effective method for early identifying hypertension risk.</description><subject>Accuracy</subject><subject>Adipose tissue</subject><subject>Adipose tissues</subject><subject>Adiposity</subject><subject>adiposity index</subject><subject>Adults</subject><subject>Alcohol use</subject><subject>Blood pressure</subject><subject>Body fat</subject><subject>Body mass index</subject><subject>China - epidemiology</subject><subject>Chinese adult</subject><subject>Cholesterol</subject><subject>Comparative analysis</subject><subject>Diabetes</subject><subject>Diet therapy</subject><subject>East Asian People</subject><subject>Families &amp; family life</subject><subject>Family medical history</subject><subject>Female</subject><subject>Health surveillance</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - epidemiology</subject><subject>Laboratories</subject><subject>Lipoproteins</subject><subject>Male</subject><subject>Metabolism</subject><subject>Middle age</subject><subject>Middle Aged</subject><subject>Multivariate analysis</subject><subject>Nutrition</subject><subject>nutrition surveillance</subject><subject>Obesity - epidemiology</subject><subject>Regression analysis</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkttuEzEQhlcIRKvSGx4AWeKmIKX4sPauuUFROCRSBUiFa8vrnU0c7dqp7Y3oi_C8OElpG4QteazxN7_tX1MULwm-ZEzid24kHEtKSvGkOKW4ohMhSvb00f6kOI9xjXejwpVgz4sTVpWM0hqfFr9nftjoYKN3yHfoGrYQdI-mrd34aNMtWrgWfkFE1qHvAVprknVLNL_dQEjgos11evA5NVtZBxFy6din-B591EmjLvhhf6LR1zEFm_a8a9EcdJ9W6HoMW7B9r50BdEEx4ZO8VG9eFM863Uc4v4tnxc_Pn37M5pOrb18Ws-nVxPASp4mR2YIWA9HcGEKBCkwIE1UjSmk4kaWkWuocOiYaVhktOWnqjnGuKe14yc6KxUG39XqtNsEOOtwqr63aJ3xYKh2SNT0oUdaYSoMFa2RpOq7bbKDETVmzilNhstaHg9ZmbAZoDbiUrTwSPT5xdqWWfqsIJjXmbPeaizuF4G9GiEkNNhrY2QN-jIrWTFBZccEy-vofdO3H4LJXmSK0YiWV9QO11PkH1nU-X2x2ompaZXMYo0xk6vI_VJ4tDNZ4B53N-aOCt4cCE3yMAbr7TxKsdl2pHroyw68e23KP_u1B9gda49kQ</recordid><startdate>20230429</startdate><enddate>20230429</enddate><creator>Li, Yuge</creator><creator>Yu, Dongmei</creator><creator>Yang, Yuxiang</creator><creator>Cheng, Xue</creator><creator>Piao, Wei</creator><creator>Guo, Qiya</creator><creator>Xu, Xiaoli</creator><creator>Zhao, Liyun</creator><creator>Wang, Yuying</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-4191-7009</orcidid><orcidid>https://orcid.org/0000-0001-5491-4789</orcidid></search><sort><creationdate>20230429</creationdate><title>Comparison of Several Adiposity Indexes in Predicting Hypertension among Chinese Adults: Data from China Nutrition and Health Surveillance (2015-2017)</title><author>Li, Yuge ; Yu, Dongmei ; Yang, Yuxiang ; Cheng, Xue ; Piao, Wei ; Guo, Qiya ; Xu, Xiaoli ; Zhao, Liyun ; Wang, Yuying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adipose tissue</topic><topic>Adipose tissues</topic><topic>Adiposity</topic><topic>adiposity index</topic><topic>Adults</topic><topic>Alcohol use</topic><topic>Blood pressure</topic><topic>Body fat</topic><topic>Body mass index</topic><topic>China - epidemiology</topic><topic>Chinese adult</topic><topic>Cholesterol</topic><topic>Comparative analysis</topic><topic>Diabetes</topic><topic>Diet therapy</topic><topic>East Asian People</topic><topic>Families &amp; family life</topic><topic>Family medical history</topic><topic>Female</topic><topic>Health surveillance</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - epidemiology</topic><topic>Laboratories</topic><topic>Lipoproteins</topic><topic>Male</topic><topic>Metabolism</topic><topic>Middle age</topic><topic>Middle Aged</topic><topic>Multivariate analysis</topic><topic>Nutrition</topic><topic>nutrition surveillance</topic><topic>Obesity - epidemiology</topic><topic>Regression analysis</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuge</creatorcontrib><creatorcontrib>Yu, Dongmei</creatorcontrib><creatorcontrib>Yang, Yuxiang</creatorcontrib><creatorcontrib>Cheng, Xue</creatorcontrib><creatorcontrib>Piao, Wei</creatorcontrib><creatorcontrib>Guo, Qiya</creatorcontrib><creatorcontrib>Xu, Xiaoli</creatorcontrib><creatorcontrib>Zhao, Liyun</creatorcontrib><creatorcontrib>Wang, Yuying</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuge</au><au>Yu, Dongmei</au><au>Yang, Yuxiang</au><au>Cheng, Xue</au><au>Piao, Wei</au><au>Guo, Qiya</au><au>Xu, Xiaoli</au><au>Zhao, Liyun</au><au>Wang, Yuying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Several Adiposity Indexes in Predicting Hypertension among Chinese Adults: Data from China Nutrition and Health Surveillance (2015-2017)</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2023-04-29</date><risdate>2023</risdate><volume>15</volume><issue>9</issue><spage>2146</spage><pages>2146-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>The current study is to explore the association of the Chinese visceral adiposity index (CVAI) with hypertension, and to compare the predictive power of different adiposity indexes regarding hypertension among Chinese adults aged over 45 years. A total of 99,201 participants aged over 45 years from the China Nutrition and Health Surveillance 2015-2017 were included in this study. Multivariate adjusted logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) of hypertension. Multivariate adjusted restricted cubic spline analyses were applied to explore the association of adiposity indexes with hypertension. Receiver operating characteristic (ROC) analyses were used to compare the predictive powers of different adiposity indexes of hypertension. All eight adiposity indexes included in this study were positively associated with hypertension. Compared with those in the lowest quartile of the CVAI, the participants in the highest quartile showed a significantly higher risk of hypertension (OR = 3.70, 95% CI = 3.54-3.86) after multiple adjustments. The ROC analyses suggested that the CVAI was the strongest predictor of hypertension compared to other adiposity indexes in both genders. The findings supported that the CVAI could serve as a reliable and cost-effective method for early identifying hypertension risk.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37432280</pmid><doi>10.3390/nu15092146</doi><orcidid>https://orcid.org/0009-0007-4191-7009</orcidid><orcidid>https://orcid.org/0000-0001-5491-4789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2023-04, Vol.15 (9), p.2146
issn 2072-6643
2072-6643
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_648029c063b94cf5ad28090b4837526c
source PubMed Central Free; Publicly Available Content Database
subjects Accuracy
Adipose tissue
Adipose tissues
Adiposity
adiposity index
Adults
Alcohol use
Blood pressure
Body fat
Body mass index
China - epidemiology
Chinese adult
Cholesterol
Comparative analysis
Diabetes
Diet therapy
East Asian People
Families & family life
Family medical history
Female
Health surveillance
High density lipoprotein
Humans
Hypertension
Hypertension - epidemiology
Laboratories
Lipoproteins
Male
Metabolism
Middle age
Middle Aged
Multivariate analysis
Nutrition
nutrition surveillance
Obesity - epidemiology
Regression analysis
Software
Statistical analysis
title Comparison of Several Adiposity Indexes in Predicting Hypertension among Chinese Adults: Data from China Nutrition and Health Surveillance (2015-2017)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Several%20Adiposity%20Indexes%20in%20Predicting%20Hypertension%20among%20Chinese%20Adults:%20Data%20from%20China%20Nutrition%20and%20Health%20Surveillance%20(2015-2017)&rft.jtitle=Nutrients&rft.au=Li,%20Yuge&rft.date=2023-04-29&rft.volume=15&rft.issue=9&rft.spage=2146&rft.pages=2146-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu15092146&rft_dat=%3Cgale_doaj_%3EA749233236%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-c9390d0e1a5cc12e26011367b649c519492a9a949f36b37ca951b8f355a22f543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812734298&rft_id=info:pmid/37432280&rft_galeid=A749233236&rfr_iscdi=true