Loading…
Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane
The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with hi...
Saved in:
Published in: | Aerospace 2022-09, Vol.9 (9), p.527 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-810f227d42b35044baf0ead3a7967b6d58961edc88b13f9affc7e526ec938ecf3 |
container_end_page | |
container_issue | 9 |
container_start_page | 527 |
container_title | Aerospace |
container_volume | 9 |
creator | Di Rito, Gianpietro Kovel, Romain Nardeschi, Marco Borgarelli, Nicola Luciano, Benedetto |
description | The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with high disturbance-rejection capability, the attention is focused on control hardover faults which determine an actuator runaway from the commanded setpoint. To perform the study, a high-fidelity nonlinear model of the EMA is developed from physical first principles and the main features of health-monitoring and closed-loop control functions (integrating the conventional nested loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented. The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests. Simulation results are finally proposed to characterize the failure transients in worst case scenarios by highlighting the importance of using a specifically designed back-electromotive damper circuitry into the EMA power electronics to limit the position deviation after the fault detection. |
doi_str_mv | 10.3390/aerospace9090527 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_648b067ad552455f9149d3bc36453873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742117308</galeid><doaj_id>oai_doaj_org_article_648b067ad552455f9149d3bc36453873</doaj_id><sourcerecordid>A742117308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-810f227d42b35044baf0ead3a7967b6d58961edc88b13f9affc7e526ec938ecf3</originalsourceid><addsrcrecordid>eNpdkc1qGzEUhYfSQkOafZeCrifVz0iaWZpg14GEFpKuhzuaK1tGlqaSXMhD9J0rx6WUSgtJh3M-LjpN85HRWyEG-hkwxbyAwYEOVHL9prninKu2E4y-_ef-vrnJ-UDrGpjoqbxqfj264I4uQ3ExkGjJBpw_JSTPCUJ2GEomLhB41dsnsEjWHk1JsX1Es4fgDHiyMuUEJSayPi4-vuBMbH2UPZKNh4U8xp8wecxnPpCt2-3bpwWra4vembgUTO03DwE_NO8s-Iw3f87r5vtm_Xy3bR--frm_Wz20RmhW2p5Ry7meOz4JSbtuAksRZgF6UHpSs-wHxXA2fT8xYQew1miUXKEZRI_Giuvm_sKdIxzGJbkjpJcxghtfhZh2I6TijMdRdf1ElYZZSt5JaQfWDbOYjFCdFL0WlfXpwlpS_HHCXMZDPKVQxx-5ZqpT51x13V5cO6hQF2wsCUzdMx7rFwS0ruor3XHGtKB9DdBLwNRqc0L7d0xGx3Pp4_-li9_wPKEg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716465245</pqid></control><display><type>article</type><title>Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Di Rito, Gianpietro ; Kovel, Romain ; Nardeschi, Marco ; Borgarelli, Nicola ; Luciano, Benedetto</creator><creatorcontrib>Di Rito, Gianpietro ; Kovel, Romain ; Nardeschi, Marco ; Borgarelli, Nicola ; Luciano, Benedetto</creatorcontrib><description>The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with high disturbance-rejection capability, the attention is focused on control hardover faults which determine an actuator runaway from the commanded setpoint. To perform the study, a high-fidelity nonlinear model of the EMA is developed from physical first principles and the main features of health-monitoring and closed-loop control functions (integrating the conventional nested loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented. The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests. Simulation results are finally proposed to characterize the failure transients in worst case scenarios by highlighting the importance of using a specifically designed back-electromotive damper circuitry into the EMA power electronics to limit the position deviation after the fault detection.</description><identifier>ISSN: 2226-4310</identifier><identifier>EISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace9090527</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuators ; Aircraft ; Algorithms ; Analysis ; Aviation ; Circuits ; Control theory ; Design ; electro-mechanical actuators ; Failure ; Fault detection ; Feedback control ; Feedback loops ; First principles ; flight control ; Flying-machines ; health monitoring ; Helicopters ; modelling ; Nested loops ; Parameter identification ; Power electronics ; Simulation ; Simulation methods ; Stiffness ; Temperature effects ; testing</subject><ispartof>Aerospace, 2022-09, Vol.9 (9), p.527</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-810f227d42b35044baf0ead3a7967b6d58961edc88b13f9affc7e526ec938ecf3</cites><orcidid>0000-0003-0781-8967 ; 0000-0003-1441-0513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716465245/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716465245?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Di Rito, Gianpietro</creatorcontrib><creatorcontrib>Kovel, Romain</creatorcontrib><creatorcontrib>Nardeschi, Marco</creatorcontrib><creatorcontrib>Borgarelli, Nicola</creatorcontrib><creatorcontrib>Luciano, Benedetto</creatorcontrib><title>Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane</title><title>Aerospace</title><description>The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with high disturbance-rejection capability, the attention is focused on control hardover faults which determine an actuator runaway from the commanded setpoint. To perform the study, a high-fidelity nonlinear model of the EMA is developed from physical first principles and the main features of health-monitoring and closed-loop control functions (integrating the conventional nested loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented. The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests. Simulation results are finally proposed to characterize the failure transients in worst case scenarios by highlighting the importance of using a specifically designed back-electromotive damper circuitry into the EMA power electronics to limit the position deviation after the fault detection.</description><subject>Actuators</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Aviation</subject><subject>Circuits</subject><subject>Control theory</subject><subject>Design</subject><subject>electro-mechanical actuators</subject><subject>Failure</subject><subject>Fault detection</subject><subject>Feedback control</subject><subject>Feedback loops</subject><subject>First principles</subject><subject>flight control</subject><subject>Flying-machines</subject><subject>health monitoring</subject><subject>Helicopters</subject><subject>modelling</subject><subject>Nested loops</subject><subject>Parameter identification</subject><subject>Power electronics</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Stiffness</subject><subject>Temperature effects</subject><subject>testing</subject><issn>2226-4310</issn><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1qGzEUhYfSQkOafZeCrifVz0iaWZpg14GEFpKuhzuaK1tGlqaSXMhD9J0rx6WUSgtJh3M-LjpN85HRWyEG-hkwxbyAwYEOVHL9prninKu2E4y-_ef-vrnJ-UDrGpjoqbxqfj264I4uQ3ExkGjJBpw_JSTPCUJ2GEomLhB41dsnsEjWHk1JsX1Es4fgDHiyMuUEJSayPi4-vuBMbH2UPZKNh4U8xp8wecxnPpCt2-3bpwWra4vembgUTO03DwE_NO8s-Iw3f87r5vtm_Xy3bR--frm_Wz20RmhW2p5Ry7meOz4JSbtuAksRZgF6UHpSs-wHxXA2fT8xYQew1miUXKEZRI_Giuvm_sKdIxzGJbkjpJcxghtfhZh2I6TijMdRdf1ElYZZSt5JaQfWDbOYjFCdFL0WlfXpwlpS_HHCXMZDPKVQxx-5ZqpT51x13V5cO6hQF2wsCUzdMx7rFwS0ruor3XHGtKB9DdBLwNRqc0L7d0xGx3Pp4_-li9_wPKEg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Di Rito, Gianpietro</creator><creator>Kovel, Romain</creator><creator>Nardeschi, Marco</creator><creator>Borgarelli, Nicola</creator><creator>Luciano, Benedetto</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0781-8967</orcidid><orcidid>https://orcid.org/0000-0003-1441-0513</orcidid></search><sort><creationdate>20220901</creationdate><title>Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane</title><author>Di Rito, Gianpietro ; Kovel, Romain ; Nardeschi, Marco ; Borgarelli, Nicola ; Luciano, Benedetto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-810f227d42b35044baf0ead3a7967b6d58961edc88b13f9affc7e526ec938ecf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuators</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Aviation</topic><topic>Circuits</topic><topic>Control theory</topic><topic>Design</topic><topic>electro-mechanical actuators</topic><topic>Failure</topic><topic>Fault detection</topic><topic>Feedback control</topic><topic>Feedback loops</topic><topic>First principles</topic><topic>flight control</topic><topic>Flying-machines</topic><topic>health monitoring</topic><topic>Helicopters</topic><topic>modelling</topic><topic>Nested loops</topic><topic>Parameter identification</topic><topic>Power electronics</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Stiffness</topic><topic>Temperature effects</topic><topic>testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Rito, Gianpietro</creatorcontrib><creatorcontrib>Kovel, Romain</creatorcontrib><creatorcontrib>Nardeschi, Marco</creatorcontrib><creatorcontrib>Borgarelli, Nicola</creatorcontrib><creatorcontrib>Luciano, Benedetto</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Rito, Gianpietro</au><au>Kovel, Romain</au><au>Nardeschi, Marco</au><au>Borgarelli, Nicola</au><au>Luciano, Benedetto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane</atitle><jtitle>Aerospace</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>9</volume><issue>9</issue><spage>527</spage><pages>527-</pages><issn>2226-4310</issn><eissn>2226-4310</eissn><abstract>The work deals with the model-based characterization of the failure transients of a fail-safe rotary EMA developed by Umbragroup (Italy) for the flap movables of the RACER helicopter-plane by Airbus Helicopters (France). Since the reference application requires quasi-static position-tracking with high disturbance-rejection capability, the attention is focused on control hardover faults which determine an actuator runaway from the commanded setpoint. To perform the study, a high-fidelity nonlinear model of the EMA is developed from physical first principles and the main features of health-monitoring and closed-loop control functions (integrating the conventional nested loops architecture with a deformation feedback loop enhancing the actuator stiffness) are presented. The EMA model is then validated with experiments by identifying its parameters by ad-hoc tests. Simulation results are finally proposed to characterize the failure transients in worst case scenarios by highlighting the importance of using a specifically designed back-electromotive damper circuitry into the EMA power electronics to limit the position deviation after the fault detection.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/aerospace9090527</doi><orcidid>https://orcid.org/0000-0003-0781-8967</orcidid><orcidid>https://orcid.org/0000-0003-1441-0513</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2226-4310 |
ispartof | Aerospace, 2022-09, Vol.9 (9), p.527 |
issn | 2226-4310 2226-4310 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_648b067ad552455f9149d3bc36453873 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Actuators Aircraft Algorithms Analysis Aviation Circuits Control theory Design electro-mechanical actuators Failure Fault detection Feedback control Feedback loops First principles flight control Flying-machines health monitoring Helicopters modelling Nested loops Parameter identification Power electronics Simulation Simulation methods Stiffness Temperature effects testing |
title | Minimisation of Failure Transients in a Fail-Safe Electro-Mechanical Actuator Employed for the Flap Movables of a High-Speed Helicopter-Plane |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimisation%20of%20Failure%20Transients%20in%20a%20Fail-Safe%20Electro-Mechanical%20Actuator%20Employed%20for%20the%20Flap%20Movables%20of%20a%20High-Speed%20Helicopter-Plane&rft.jtitle=Aerospace&rft.au=Di%20Rito,%20Gianpietro&rft.date=2022-09-01&rft.volume=9&rft.issue=9&rft.spage=527&rft.pages=527-&rft.issn=2226-4310&rft.eissn=2226-4310&rft_id=info:doi/10.3390/aerospace9090527&rft_dat=%3Cgale_doaj_%3EA742117308%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-810f227d42b35044baf0ead3a7967b6d58961edc88b13f9affc7e526ec938ecf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716465245&rft_id=info:pmid/&rft_galeid=A742117308&rfr_iscdi=true |