Loading…
Photocatalytic-ozonation process in oxytetracycline degradation in aqueous solution: composite characterization, optimization, energy consumption, and by-products
In this research, we synthesized BiOI/NH 2 -MIL125(Ti) via solvo-thermal method to investigation of oxytetracycline (OTC) degradation in photocatalytic-ozonation process. The results of the XRD, FESEM, EDAX, FTIR, UV–Vis, TEM, XPS, and BET analyzes indicated that the catalyst BiOI/MOF was synthesize...
Saved in:
Published in: | Scientific reports 2023-07, Vol.13 (1), p.11113-11113, Article 11113 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, we synthesized BiOI/NH
2
-MIL125(Ti) via solvo-thermal method to investigation of oxytetracycline (OTC) degradation in photocatalytic-ozonation process. The results of the XRD, FESEM, EDAX, FTIR, UV–Vis, TEM, XPS, and BET analyzes indicated that the catalyst BiOI/MOF was synthesized with excellent quality. Design of experiment (DOE), ANOVA statistical analysis, interaction of parameters and predicated optimum condition was done based on CCD. The effect of catalyst dose (0.25–0.5 mg/l), pH (4–8), reaction time (30–60 min) and O
3
concentration (20–40 mN) at 10 mg/l of OTC on PCO/O
3
process was optimized. Based on P-value and F-value coefficients (0.0001, 450.3 respectively) the model of OTC (F-value = 2451.04) and (P-value = 0.0001) coefficients, the model of COD removal was quadratic model. Under optimum condition pH 8.0, CD = 0.34 mg/l, RT = 56 min and O
3
concentration = 28.7 mN, 96.2 and 77.2% of OTC and COD removed, respectively. The reduction of TOC was 64.2% in optimal conditions, which is less than the reduction of COD and OTC. The kinetics of reaction followed pseudo-first-order kinetic (R
2
= 0.99). Synergistic effect coefficient was 1.31 that indicated ozonation, presence of catalyst and photolysis had a synergistic effect on OTC removal. The stability and reusability of the catalyst in six consecutive operating steps was acceptable and 7% efficiency decreased only. Cations (Mg
2+
, and Ca
2+
), SO
4
2−
had no influence on performing the process, but other anions, organic scavengers, and nitrogen gas, had an inhibitory effect. Finally, the OTC degradation probably pathway includes direct and indirect oxidation that decarboxylation, hydroxylation, demethylation and were the main mechanism in OTC degradation. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-38309-0 |