Loading…
Attributing Air Pollutant Exposure to Emission Sources with Proximity Sensing
Biomass burning for home energy use contributes to negative health outcomes and environmental degradation. As part of the REACCTING study (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana), personal exposure to carbon monoxide (CO) was measured to gauge the eff...
Saved in:
Published in: | Atmosphere 2019-07, Vol.10 (7), p.395 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biomass burning for home energy use contributes to negative health outcomes and environmental degradation. As part of the REACCTING study (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana), personal exposure to carbon monoxide (CO) was measured to gauge the effects of introducing two different cookstove types over four intervention groups. A novel Bluetooth Low-Energy (BLE) Beacon system was deployed on a subset of those CO measurement periods to estimate participants’ distances to their most-used cooking areas during the sampling periods. In addition to presenting methods and validation for the BLE Beacon system, here we present pollution exposure assessment modeling results using two different approaches, in which time-activity (proximity) data is used to: (1) better understand exposure and behaviors within and away from homes; and (2) predict personal exposure via microenvironment air quality measurements. Model fits were improved in both cases, demonstrating the benefits of the proximity measurements. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos10070395 |