Loading…

Hysteresis erasure in ZIF-8@ZnO nanorod array field-effect transistors through oxygen chemisorption-induced depolarization

Zeolitic imidazolate framework-8 (ZIF-8) is a versatile candidate for next-generation electronics owing to its adjustable lattice and physicochemical properties. However, the utilization of ZIF-8 for the fabrication of solid-state electronics and circuit components, such as field-effect transistors...

Full description

Saved in:
Bibliographic Details
Published in:APL materials 2024-01, Vol.12 (1), p.011117-011117-8
Main Authors: Luan, Pengyan, Yang, Zhenxin, Liang, Zheng, Li, Xiaoliang, Chen, Nan, Li, Fushun, Li, Xuanhe, Su, Jiale, Lu, Zheng-Hong, Zhu, Qiang
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zeolitic imidazolate framework-8 (ZIF-8) is a versatile candidate for next-generation electronics owing to its adjustable lattice and physicochemical properties. However, the utilization of ZIF-8 for the fabrication of solid-state electronics and circuit components, such as field-effect transistors (FETs), has not been realized thus far, primarily due to ongoing debates surrounding its electrical properties. In this work, we fabricated n-type FETs using ZIF-8@ZnO nanorod arrays. A significant hysteresis behavior was observed. It was demonstrated that this hysteresis cannot be assigned to the well-established ferroelectric effect but rather to the polarization of ZIF-8, wherein the electric field of the gate aligns the dipole of 2-methylimidazole through molecular orientation rotation. It was clarified that the process of annealing in air can result in the chemisorption of oxygen on methylimidazole, leading to a limitation in the rotation of methylimidazole. This restriction ultimately causes the depolarization of ZIF-8, resulting in the erasure of hysteresis. This study unfolds the tunable hysteresis behavior of ZIF-8 and its sensibility to oxygen, thereby highlighting the potential applications of ZIF-8 in FETs, nonvolatile memories, and gas sensors.
ISSN:2166-532X
2166-532X
DOI:10.1063/5.0180499