Loading…
Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface
Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device cu...
Saved in:
Published in: | Nature communications 2020-10, Vol.11 (1), p.5483-5483, Article 5483 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113 |
container_end_page | 5483 |
container_issue | 1 |
container_start_page | 5483 |
container_title | Nature communications |
container_volume | 11 |
creator | Leng, Kai Wang, Lin Shao, Yan Abdelwahab, Ibrahim Grinblat, Gustavo Verzhbitskiy, Ivan Li, Runlai Cai, Yongqing Chi, Xiao Fu, Wei Song, Peng Rusydi, Andrivo Eda, Goki Maier, Stefan A. Loh, Kian Ping |
description | Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm
2
V
−1
s
−1
between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
Insulating molecular layers on the basal plane of 2D perovskite is a major bottleneck for charge injection that limiting device performance. Here, the authors show that plane-contacted graphene functions as a low barrier and gate-tunable contact to overcome this limitation. |
doi_str_mv | 10.1038/s41467-020-19331-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_64f26d1d31a7459094a4a0ae1ef396af</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_64f26d1d31a7459094a4a0ae1ef396af</doaj_id><sourcerecordid>2471529102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEolXpF-BkiQuXgP_G8QUJlRYqVeoBpJ4qa-JMslmy9mI7K_Xb4zYVUA71xfbMez-PrFdVbxn9wKhoPybJZKNrymnNjBCsbl5Ux5xKVjPNxct_zkfVaUpbWpYwrJXydXVU9FwbSo-r2_MZXY7Bk7x4j_PkRwKZ5A2SXSitZYY435X75An_QvYYwyH9nDIS8D0ZI-w36JEcwJMeI7kBmBOZfMY4gMM31auhFPD0cT-pvl-c_zj7Vl9df708-3xVO8V0rjuqGiXkwAcApRxqigIM76RRQN3QQYtl3Ea3rVO6ZV0nB6OoQc61Y0ycVJcrtQ-wtfs47SDe2QCTfSiEOFqIeXIz2qY80vSsFwy0VIYaCRIoIMNBmAaGwvq0svZLt8Peoc8R5ifQpx0_bewYDlYrY7jkBfD-ERDDrwVTtrspOZxn8BiWZLlUjRRUUF2k7_6TbsMSffmootJMccPoPZCvKhdDShGHP8Mwau-jYNco2BIF-xAF2xSTWE2piP2I8S_6GddvdKO0wA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471529102</pqid></control><display><type>article</type><title>Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface</title><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Leng, Kai ; Wang, Lin ; Shao, Yan ; Abdelwahab, Ibrahim ; Grinblat, Gustavo ; Verzhbitskiy, Ivan ; Li, Runlai ; Cai, Yongqing ; Chi, Xiao ; Fu, Wei ; Song, Peng ; Rusydi, Andrivo ; Eda, Goki ; Maier, Stefan A. ; Loh, Kian Ping</creator><creatorcontrib>Leng, Kai ; Wang, Lin ; Shao, Yan ; Abdelwahab, Ibrahim ; Grinblat, Gustavo ; Verzhbitskiy, Ivan ; Li, Runlai ; Cai, Yongqing ; Chi, Xiao ; Fu, Wei ; Song, Peng ; Rusydi, Andrivo ; Eda, Goki ; Maier, Stefan A. ; Loh, Kian Ping</creatorcontrib><description>Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm
2
V
−1
s
−1
between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
Insulating molecular layers on the basal plane of 2D perovskite is a major bottleneck for charge injection that limiting device performance. Here, the authors show that plane-contacted graphene functions as a low barrier and gate-tunable contact to overcome this limitation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-19331-6</identifier><identifier>PMID: 33127900</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/122 ; 140/125 ; 147/138 ; 147/3 ; 639/301/1005/1007 ; 639/766/36/1122 ; 639/925/927/1007 ; Basal plane ; Coupling (molecular) ; Electron tunneling ; Energy levels ; Field effect transistors ; Field emission ; Graphene ; Humanities and Social Sciences ; Injection ; multidisciplinary ; Optoelectronics ; Organic chemistry ; Perovskites ; Science ; Science (multidisciplinary) ; Semiconductor devices ; Spectroscopy</subject><ispartof>Nature communications, 2020-10, Vol.11 (1), p.5483-5483, Article 5483</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113</citedby><cites>FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113</cites><orcidid>0000-0001-5945-8276 ; 0000-0002-1575-8020 ; 0000-0003-3430-7345 ; 0000-0001-5018-1960 ; 0000-0003-2193-9650 ; 0000-0001-9704-7902 ; 0000-0003-3408-5033 ; 0000-0002-0107-5827 ; 0000-0002-1491-743X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2471529102/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2471529102?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids></links><search><creatorcontrib>Leng, Kai</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Shao, Yan</creatorcontrib><creatorcontrib>Abdelwahab, Ibrahim</creatorcontrib><creatorcontrib>Grinblat, Gustavo</creatorcontrib><creatorcontrib>Verzhbitskiy, Ivan</creatorcontrib><creatorcontrib>Li, Runlai</creatorcontrib><creatorcontrib>Cai, Yongqing</creatorcontrib><creatorcontrib>Chi, Xiao</creatorcontrib><creatorcontrib>Fu, Wei</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Rusydi, Andrivo</creatorcontrib><creatorcontrib>Eda, Goki</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><title>Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm
2
V
−1
s
−1
between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
Insulating molecular layers on the basal plane of 2D perovskite is a major bottleneck for charge injection that limiting device performance. Here, the authors show that plane-contacted graphene functions as a low barrier and gate-tunable contact to overcome this limitation.</description><subject>132/122</subject><subject>140/125</subject><subject>147/138</subject><subject>147/3</subject><subject>639/301/1005/1007</subject><subject>639/766/36/1122</subject><subject>639/925/927/1007</subject><subject>Basal plane</subject><subject>Coupling (molecular)</subject><subject>Electron tunneling</subject><subject>Energy levels</subject><subject>Field effect transistors</subject><subject>Field emission</subject><subject>Graphene</subject><subject>Humanities and Social Sciences</subject><subject>Injection</subject><subject>multidisciplinary</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor devices</subject><subject>Spectroscopy</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEolXpF-BkiQuXgP_G8QUJlRYqVeoBpJ4qa-JMslmy9mI7K_Xb4zYVUA71xfbMez-PrFdVbxn9wKhoPybJZKNrymnNjBCsbl5Ux5xKVjPNxct_zkfVaUpbWpYwrJXydXVU9FwbSo-r2_MZXY7Bk7x4j_PkRwKZ5A2SXSitZYY435X75An_QvYYwyH9nDIS8D0ZI-w36JEcwJMeI7kBmBOZfMY4gMM31auhFPD0cT-pvl-c_zj7Vl9df708-3xVO8V0rjuqGiXkwAcApRxqigIM76RRQN3QQYtl3Ea3rVO6ZV0nB6OoQc61Y0ycVJcrtQ-wtfs47SDe2QCTfSiEOFqIeXIz2qY80vSsFwy0VIYaCRIoIMNBmAaGwvq0svZLt8Peoc8R5ifQpx0_bewYDlYrY7jkBfD-ERDDrwVTtrspOZxn8BiWZLlUjRRUUF2k7_6TbsMSffmootJMccPoPZCvKhdDShGHP8Mwau-jYNco2BIF-xAF2xSTWE2piP2I8S_6GddvdKO0wA</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Leng, Kai</creator><creator>Wang, Lin</creator><creator>Shao, Yan</creator><creator>Abdelwahab, Ibrahim</creator><creator>Grinblat, Gustavo</creator><creator>Verzhbitskiy, Ivan</creator><creator>Li, Runlai</creator><creator>Cai, Yongqing</creator><creator>Chi, Xiao</creator><creator>Fu, Wei</creator><creator>Song, Peng</creator><creator>Rusydi, Andrivo</creator><creator>Eda, Goki</creator><creator>Maier, Stefan A.</creator><creator>Loh, Kian Ping</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5945-8276</orcidid><orcidid>https://orcid.org/0000-0002-1575-8020</orcidid><orcidid>https://orcid.org/0000-0003-3430-7345</orcidid><orcidid>https://orcid.org/0000-0001-5018-1960</orcidid><orcidid>https://orcid.org/0000-0003-2193-9650</orcidid><orcidid>https://orcid.org/0000-0001-9704-7902</orcidid><orcidid>https://orcid.org/0000-0003-3408-5033</orcidid><orcidid>https://orcid.org/0000-0002-0107-5827</orcidid><orcidid>https://orcid.org/0000-0002-1491-743X</orcidid></search><sort><creationdate>20201030</creationdate><title>Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface</title><author>Leng, Kai ; Wang, Lin ; Shao, Yan ; Abdelwahab, Ibrahim ; Grinblat, Gustavo ; Verzhbitskiy, Ivan ; Li, Runlai ; Cai, Yongqing ; Chi, Xiao ; Fu, Wei ; Song, Peng ; Rusydi, Andrivo ; Eda, Goki ; Maier, Stefan A. ; Loh, Kian Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>132/122</topic><topic>140/125</topic><topic>147/138</topic><topic>147/3</topic><topic>639/301/1005/1007</topic><topic>639/766/36/1122</topic><topic>639/925/927/1007</topic><topic>Basal plane</topic><topic>Coupling (molecular)</topic><topic>Electron tunneling</topic><topic>Energy levels</topic><topic>Field effect transistors</topic><topic>Field emission</topic><topic>Graphene</topic><topic>Humanities and Social Sciences</topic><topic>Injection</topic><topic>multidisciplinary</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor devices</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Kai</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Shao, Yan</creatorcontrib><creatorcontrib>Abdelwahab, Ibrahim</creatorcontrib><creatorcontrib>Grinblat, Gustavo</creatorcontrib><creatorcontrib>Verzhbitskiy, Ivan</creatorcontrib><creatorcontrib>Li, Runlai</creatorcontrib><creatorcontrib>Cai, Yongqing</creatorcontrib><creatorcontrib>Chi, Xiao</creatorcontrib><creatorcontrib>Fu, Wei</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><creatorcontrib>Rusydi, Andrivo</creatorcontrib><creatorcontrib>Eda, Goki</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Kai</au><au>Wang, Lin</au><au>Shao, Yan</au><au>Abdelwahab, Ibrahim</au><au>Grinblat, Gustavo</au><au>Verzhbitskiy, Ivan</au><au>Li, Runlai</au><au>Cai, Yongqing</au><au>Chi, Xiao</au><au>Fu, Wei</au><au>Song, Peng</au><au>Rusydi, Andrivo</au><au>Eda, Goki</au><au>Maier, Stefan A.</au><au>Loh, Kian Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2020-10-30</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>5483</spage><epage>5483</epage><pages>5483-5483</pages><artnum>5483</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Quasi-two-dimensional perovskites have emerged as a new material platform for optoelectronics on account of its intrinsic stability. A major bottleneck to device performance is the high charge injection barrier caused by organic molecular layers on its basal plane, thus the best performing device currently relies on edge contact. Herein, by leveraging on van der Waals coupling and energy level matching between two-dimensional Ruddlesden-Popper perovskite and graphene, we show that the plane-contacted perovskite and graphene interface presents a lower barrier than gold for charge injection. Electron tunneling across the interface occurs via a gate-tunable, direct tunneling-to-field emission mechanism with increasing bias, and photoinduced charge transfer occurs at femtosecond timescale (~50 fs). Field effect transistors fabricated on molecularly thin Ruddlesden-Popper perovskite using graphene contact exhibit electron mobilities ranging from 0.1 to 0.018 cm
2
V
−1
s
−1
between 1.7 to 200 K. Scanning tunneling spectroscopy studies reveal layer-dependent tunneling barrier and domain size on few-layered Ruddlesden-Popper perovskite.
Insulating molecular layers on the basal plane of 2D perovskite is a major bottleneck for charge injection that limiting device performance. Here, the authors show that plane-contacted graphene functions as a low barrier and gate-tunable contact to overcome this limitation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33127900</pmid><doi>10.1038/s41467-020-19331-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5945-8276</orcidid><orcidid>https://orcid.org/0000-0002-1575-8020</orcidid><orcidid>https://orcid.org/0000-0003-3430-7345</orcidid><orcidid>https://orcid.org/0000-0001-5018-1960</orcidid><orcidid>https://orcid.org/0000-0003-2193-9650</orcidid><orcidid>https://orcid.org/0000-0001-9704-7902</orcidid><orcidid>https://orcid.org/0000-0003-3408-5033</orcidid><orcidid>https://orcid.org/0000-0002-0107-5827</orcidid><orcidid>https://orcid.org/0000-0002-1491-743X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-10, Vol.11 (1), p.5483-5483, Article 5483 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_64f26d1d31a7459094a4a0ae1ef396af |
source | Publicly Available Content (ProQuest); Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 132/122 140/125 147/138 147/3 639/301/1005/1007 639/766/36/1122 639/925/927/1007 Basal plane Coupling (molecular) Electron tunneling Energy levels Field effect transistors Field emission Graphene Humanities and Social Sciences Injection multidisciplinary Optoelectronics Organic chemistry Perovskites Science Science (multidisciplinary) Semiconductor devices Spectroscopy |
title | Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20tunneling%20at%20the%20molecularly%20thin%202D%20perovskite%20and%20graphene%20van%20der%20Waals%20interface&rft.jtitle=Nature%20communications&rft.au=Leng,%20Kai&rft.date=2020-10-30&rft.volume=11&rft.issue=1&rft.spage=5483&rft.epage=5483&rft.pages=5483-5483&rft.artnum=5483&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-19331-6&rft_dat=%3Cproquest_doaj_%3E2471529102%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-b056534f2faa55ce70e3a92b495a0cfba8e2796788c5781bb4f9509e227c113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2471529102&rft_id=info:pmid/33127900&rfr_iscdi=true |