Loading…

Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel

The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microsc...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-01, Vol.11 (1), p.135
Main Authors: Jaffré, Kathleen, Ter-Ovanessian, Benoît, Abe, Hiroshi, Mary, Nicolas, Normand, Bernard, Watanabe, Yutaka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3
cites cdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3
container_end_page
container_issue 1
container_start_page 135
container_title Metals (Basel )
container_volume 11
creator Jaffré, Kathleen
Ter-Ovanessian, Benoît
Abe, Hiroshi
Mary, Nicolas
Normand, Bernard
Watanabe, Yutaka
description The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.
doi_str_mv 10.3390/met11010135
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6505163be7784e4aa7b62df293edf530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6505163be7784e4aa7b62df293edf530</doaj_id><sourcerecordid>2478384038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEICDUme-gcEfSxOVx93Oj22xkkNDi3EeRZ70io-cz4lkmzov--5LsG7D7vMDrMDU1WfOdxLaeDbjgrnMLWsL6prAbqeKQ388mz_VN3lvIWpWtGAMddVvwiBXGExsCdyGxx7hwN73qeAjtg6EZYdjSWzOLKyoY_Lc8FCDEfPfmPO_YHYD9rgoY_pKCVBrY6Ufhwo52kjGm6rq4BDprv_86Z6eVis5z9nq1-Py_n31cwpCWVWo3ct1KJWjW6MJi2N5-A6hDChCgE8OsONaKmdrHPvO6MFKG8kCsk7eVMtT7o-4ta-pX6H6Y-N2Nt_QEyvFlPp3UC2qaHmjexI61aRQtRdI3wQRpIPtYRJ68tJ6y3F9z3lYrdxn8bJvhVKt7JVINuJ9fXEcinmnCh8fOVgj9HYs2jkX__ffvw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478384038</pqid></control><display><type>article</type><title>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</title><source>Publicly Available Content (ProQuest)</source><creator>Jaffré, Kathleen ; Ter-Ovanessian, Benoît ; Abe, Hiroshi ; Mary, Nicolas ; Normand, Bernard ; Watanabe, Yutaka</creator><creatorcontrib>Jaffré, Kathleen ; Ter-Ovanessian, Benoît ; Abe, Hiroshi ; Mary, Nicolas ; Normand, Bernard ; Watanabe, Yutaka</creatorcontrib><description>The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11010135</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Austenitic stainless steels ; Compressive properties ; Corrosion resistance ; Diamonds ; Dry grinding ; Electrochemical impedance spectroscopy ; Electrodes ; Electrolytes ; Electron microscopy ; Grinding ; Mechanical polishing ; passive films ; Plastic deformation ; Point defects ; Profilometers ; Residual stress ; Scanning electron microscopy ; SEM ; Spectrum analysis ; Stainless steel ; Surface finishing ; Surface treatment ; TEM ; Thickness ; Ultrafines ; XRD</subject><ispartof>Metals (Basel ), 2021-01, Vol.11 (1), p.135</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</citedby><cites>FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</cites><orcidid>0000-0002-2917-5598 ; 0000-0002-1208-3689 ; 0000-0001-6255-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2478384038/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2478384038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Jaffré, Kathleen</creatorcontrib><creatorcontrib>Ter-Ovanessian, Benoît</creatorcontrib><creatorcontrib>Abe, Hiroshi</creatorcontrib><creatorcontrib>Mary, Nicolas</creatorcontrib><creatorcontrib>Normand, Bernard</creatorcontrib><creatorcontrib>Watanabe, Yutaka</creatorcontrib><title>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</title><title>Metals (Basel )</title><description>The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.</description><subject>Austenitic stainless steels</subject><subject>Compressive properties</subject><subject>Corrosion resistance</subject><subject>Diamonds</subject><subject>Dry grinding</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopy</subject><subject>Grinding</subject><subject>Mechanical polishing</subject><subject>passive films</subject><subject>Plastic deformation</subject><subject>Point defects</subject><subject>Profilometers</subject><subject>Residual stress</subject><subject>Scanning electron microscopy</subject><subject>SEM</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Surface finishing</subject><subject>Surface treatment</subject><subject>TEM</subject><subject>Thickness</subject><subject>Ultrafines</subject><subject>XRD</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEICDUme-gcEfSxOVx93Oj22xkkNDi3EeRZ70io-cz4lkmzov--5LsG7D7vMDrMDU1WfOdxLaeDbjgrnMLWsL6prAbqeKQ388mz_VN3lvIWpWtGAMddVvwiBXGExsCdyGxx7hwN73qeAjtg6EZYdjSWzOLKyoY_Lc8FCDEfPfmPO_YHYD9rgoY_pKCVBrY6Ufhwo52kjGm6rq4BDprv_86Z6eVis5z9nq1-Py_n31cwpCWVWo3ct1KJWjW6MJi2N5-A6hDChCgE8OsONaKmdrHPvO6MFKG8kCsk7eVMtT7o-4ta-pX6H6Y-N2Nt_QEyvFlPp3UC2qaHmjexI61aRQtRdI3wQRpIPtYRJ68tJ6y3F9z3lYrdxn8bJvhVKt7JVINuJ9fXEcinmnCh8fOVgj9HYs2jkX__ffvw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jaffré, Kathleen</creator><creator>Ter-Ovanessian, Benoît</creator><creator>Abe, Hiroshi</creator><creator>Mary, Nicolas</creator><creator>Normand, Bernard</creator><creator>Watanabe, Yutaka</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2917-5598</orcidid><orcidid>https://orcid.org/0000-0002-1208-3689</orcidid><orcidid>https://orcid.org/0000-0001-6255-8817</orcidid></search><sort><creationdate>20210101</creationdate><title>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</title><author>Jaffré, Kathleen ; Ter-Ovanessian, Benoît ; Abe, Hiroshi ; Mary, Nicolas ; Normand, Bernard ; Watanabe, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Austenitic stainless steels</topic><topic>Compressive properties</topic><topic>Corrosion resistance</topic><topic>Diamonds</topic><topic>Dry grinding</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopy</topic><topic>Grinding</topic><topic>Mechanical polishing</topic><topic>passive films</topic><topic>Plastic deformation</topic><topic>Point defects</topic><topic>Profilometers</topic><topic>Residual stress</topic><topic>Scanning electron microscopy</topic><topic>SEM</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Surface finishing</topic><topic>Surface treatment</topic><topic>TEM</topic><topic>Thickness</topic><topic>Ultrafines</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffré, Kathleen</creatorcontrib><creatorcontrib>Ter-Ovanessian, Benoît</creatorcontrib><creatorcontrib>Abe, Hiroshi</creatorcontrib><creatorcontrib>Mary, Nicolas</creatorcontrib><creatorcontrib>Normand, Bernard</creatorcontrib><creatorcontrib>Watanabe, Yutaka</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffré, Kathleen</au><au>Ter-Ovanessian, Benoît</au><au>Abe, Hiroshi</au><au>Mary, Nicolas</au><au>Normand, Bernard</au><au>Watanabe, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</atitle><jtitle>Metals (Basel )</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>135</spage><pages>135-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11010135</doi><orcidid>https://orcid.org/0000-0002-2917-5598</orcidid><orcidid>https://orcid.org/0000-0002-1208-3689</orcidid><orcidid>https://orcid.org/0000-0001-6255-8817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-01, Vol.11 (1), p.135
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6505163be7784e4aa7b62df293edf530
source Publicly Available Content (ProQuest)
subjects Austenitic stainless steels
Compressive properties
Corrosion resistance
Diamonds
Dry grinding
Electrochemical impedance spectroscopy
Electrodes
Electrolytes
Electron microscopy
Grinding
Mechanical polishing
passive films
Plastic deformation
Point defects
Profilometers
Residual stress
Scanning electron microscopy
SEM
Spectrum analysis
Stainless steel
Surface finishing
Surface treatment
TEM
Thickness
Ultrafines
XRD
title Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Mechanical%20Surface%20Treatments%20on%20the%20Surface%20State%20and%20Passive%20Behavior%20of%20304L%20Stainless%20Steel&rft.jtitle=Metals%20(Basel%20)&rft.au=Jaffr%C3%A9,%20Kathleen&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=135&rft.pages=135-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11010135&rft_dat=%3Cproquest_doaj_%3E2478384038%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478384038&rft_id=info:pmid/&rfr_iscdi=true