Loading…
Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel
The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microsc...
Saved in:
Published in: | Metals (Basel ) 2021-01, Vol.11 (1), p.135 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3 |
container_end_page | |
container_issue | 1 |
container_start_page | 135 |
container_title | Metals (Basel ) |
container_volume | 11 |
creator | Jaffré, Kathleen Ter-Ovanessian, Benoît Abe, Hiroshi Mary, Nicolas Normand, Bernard Watanabe, Yutaka |
description | The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel. |
doi_str_mv | 10.3390/met11010135 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6505163be7784e4aa7b62df293edf530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6505163be7784e4aa7b62df293edf530</doaj_id><sourcerecordid>2478384038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEICDUme-gcEfSxOVx93Oj22xkkNDi3EeRZ70io-cz4lkmzov--5LsG7D7vMDrMDU1WfOdxLaeDbjgrnMLWsL6prAbqeKQ388mz_VN3lvIWpWtGAMddVvwiBXGExsCdyGxx7hwN73qeAjtg6EZYdjSWzOLKyoY_Lc8FCDEfPfmPO_YHYD9rgoY_pKCVBrY6Ufhwo52kjGm6rq4BDprv_86Z6eVis5z9nq1-Py_n31cwpCWVWo3ct1KJWjW6MJi2N5-A6hDChCgE8OsONaKmdrHPvO6MFKG8kCsk7eVMtT7o-4ta-pX6H6Y-N2Nt_QEyvFlPp3UC2qaHmjexI61aRQtRdI3wQRpIPtYRJ68tJ6y3F9z3lYrdxn8bJvhVKt7JVINuJ9fXEcinmnCh8fOVgj9HYs2jkX__ffvw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478384038</pqid></control><display><type>article</type><title>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</title><source>Publicly Available Content (ProQuest)</source><creator>Jaffré, Kathleen ; Ter-Ovanessian, Benoît ; Abe, Hiroshi ; Mary, Nicolas ; Normand, Bernard ; Watanabe, Yutaka</creator><creatorcontrib>Jaffré, Kathleen ; Ter-Ovanessian, Benoît ; Abe, Hiroshi ; Mary, Nicolas ; Normand, Bernard ; Watanabe, Yutaka</creatorcontrib><description>The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11010135</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Austenitic stainless steels ; Compressive properties ; Corrosion resistance ; Diamonds ; Dry grinding ; Electrochemical impedance spectroscopy ; Electrodes ; Electrolytes ; Electron microscopy ; Grinding ; Mechanical polishing ; passive films ; Plastic deformation ; Point defects ; Profilometers ; Residual stress ; Scanning electron microscopy ; SEM ; Spectrum analysis ; Stainless steel ; Surface finishing ; Surface treatment ; TEM ; Thickness ; Ultrafines ; XRD</subject><ispartof>Metals (Basel ), 2021-01, Vol.11 (1), p.135</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</citedby><cites>FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</cites><orcidid>0000-0002-2917-5598 ; 0000-0002-1208-3689 ; 0000-0001-6255-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2478384038/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2478384038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Jaffré, Kathleen</creatorcontrib><creatorcontrib>Ter-Ovanessian, Benoît</creatorcontrib><creatorcontrib>Abe, Hiroshi</creatorcontrib><creatorcontrib>Mary, Nicolas</creatorcontrib><creatorcontrib>Normand, Bernard</creatorcontrib><creatorcontrib>Watanabe, Yutaka</creatorcontrib><title>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</title><title>Metals (Basel )</title><description>The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.</description><subject>Austenitic stainless steels</subject><subject>Compressive properties</subject><subject>Corrosion resistance</subject><subject>Diamonds</subject><subject>Dry grinding</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopy</subject><subject>Grinding</subject><subject>Mechanical polishing</subject><subject>passive films</subject><subject>Plastic deformation</subject><subject>Point defects</subject><subject>Profilometers</subject><subject>Residual stress</subject><subject>Scanning electron microscopy</subject><subject>SEM</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Surface finishing</subject><subject>Surface treatment</subject><subject>TEM</subject><subject>Thickness</subject><subject>Ultrafines</subject><subject>XRD</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEICDUme-gcEfSxOVx93Oj22xkkNDi3EeRZ70io-cz4lkmzov--5LsG7D7vMDrMDU1WfOdxLaeDbjgrnMLWsL6prAbqeKQ388mz_VN3lvIWpWtGAMddVvwiBXGExsCdyGxx7hwN73qeAjtg6EZYdjSWzOLKyoY_Lc8FCDEfPfmPO_YHYD9rgoY_pKCVBrY6Ufhwo52kjGm6rq4BDprv_86Z6eVis5z9nq1-Py_n31cwpCWVWo3ct1KJWjW6MJi2N5-A6hDChCgE8OsONaKmdrHPvO6MFKG8kCsk7eVMtT7o-4ta-pX6H6Y-N2Nt_QEyvFlPp3UC2qaHmjexI61aRQtRdI3wQRpIPtYRJ68tJ6y3F9z3lYrdxn8bJvhVKt7JVINuJ9fXEcinmnCh8fOVgj9HYs2jkX__ffvw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jaffré, Kathleen</creator><creator>Ter-Ovanessian, Benoît</creator><creator>Abe, Hiroshi</creator><creator>Mary, Nicolas</creator><creator>Normand, Bernard</creator><creator>Watanabe, Yutaka</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2917-5598</orcidid><orcidid>https://orcid.org/0000-0002-1208-3689</orcidid><orcidid>https://orcid.org/0000-0001-6255-8817</orcidid></search><sort><creationdate>20210101</creationdate><title>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</title><author>Jaffré, Kathleen ; Ter-Ovanessian, Benoît ; Abe, Hiroshi ; Mary, Nicolas ; Normand, Bernard ; Watanabe, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Austenitic stainless steels</topic><topic>Compressive properties</topic><topic>Corrosion resistance</topic><topic>Diamonds</topic><topic>Dry grinding</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopy</topic><topic>Grinding</topic><topic>Mechanical polishing</topic><topic>passive films</topic><topic>Plastic deformation</topic><topic>Point defects</topic><topic>Profilometers</topic><topic>Residual stress</topic><topic>Scanning electron microscopy</topic><topic>SEM</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Surface finishing</topic><topic>Surface treatment</topic><topic>TEM</topic><topic>Thickness</topic><topic>Ultrafines</topic><topic>XRD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffré, Kathleen</creatorcontrib><creatorcontrib>Ter-Ovanessian, Benoît</creatorcontrib><creatorcontrib>Abe, Hiroshi</creatorcontrib><creatorcontrib>Mary, Nicolas</creatorcontrib><creatorcontrib>Normand, Bernard</creatorcontrib><creatorcontrib>Watanabe, Yutaka</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffré, Kathleen</au><au>Ter-Ovanessian, Benoît</au><au>Abe, Hiroshi</au><au>Mary, Nicolas</au><au>Normand, Bernard</au><au>Watanabe, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel</atitle><jtitle>Metals (Basel )</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>135</spage><pages>135-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11010135</doi><orcidid>https://orcid.org/0000-0002-2917-5598</orcidid><orcidid>https://orcid.org/0000-0002-1208-3689</orcidid><orcidid>https://orcid.org/0000-0001-6255-8817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2021-01, Vol.11 (1), p.135 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6505163be7784e4aa7b62df293edf530 |
source | Publicly Available Content (ProQuest) |
subjects | Austenitic stainless steels Compressive properties Corrosion resistance Diamonds Dry grinding Electrochemical impedance spectroscopy Electrodes Electrolytes Electron microscopy Grinding Mechanical polishing passive films Plastic deformation Point defects Profilometers Residual stress Scanning electron microscopy SEM Spectrum analysis Stainless steel Surface finishing Surface treatment TEM Thickness Ultrafines XRD |
title | Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Mechanical%20Surface%20Treatments%20on%20the%20Surface%20State%20and%20Passive%20Behavior%20of%20304L%20Stainless%20Steel&rft.jtitle=Metals%20(Basel%20)&rft.au=Jaffr%C3%A9,%20Kathleen&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=135&rft.pages=135-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11010135&rft_dat=%3Cproquest_doaj_%3E2478384038%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-5adc80525467697e739d10cba0f0524a00dac91928e8ffe1ddb97204d93a231b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2478384038&rft_id=info:pmid/&rfr_iscdi=true |