Loading…

Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity

The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the bes...

Full description

Saved in:
Bibliographic Details
Published in:ITM web of conferences 2020, Vol.35, p.7005
Main Authors: Sidnyaev, Nikolay I., Opletina, Nadezhda V., Butenko, Yulia I., Kazanceva, Elizaveta S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13
container_end_page
container_issue
container_start_page 7005
container_title ITM web of conferences
container_volume 35
creator Sidnyaev, Nikolay I.
Opletina, Nadezhda V.
Butenko, Yulia I.
Kazanceva, Elizaveta S.
description The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.
doi_str_mv 10.1051/itmconf/20203507005
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6505f3361c434ee794426caf9274abec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6505f3361c434ee794426caf9274abec</doaj_id><sourcerecordid>2474464433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhYMoWNRf4CbgejTvzCyl-IKKohbdhUwe05R2okkK9t8brYire7kcvnsOB4BTjM4x4vgilLWJo78giCDKkUSI74EJIRI3BHVy_99-CE5yXiKEMG8FJmIC3h5T7HW_2jbPRZeQSzB6Be9dWUQLfUzwNYVS3AifwzBm-ORMHMZQQhzhPIdxgGXhqlznTXIwelhxn2EdyvYYHHi9yu7kdx6B-fXVy_S2mT3c3E0vZ43BLeWN5ryjbd-2ou87onlvO0O6GstaJHqEW-sp5s5K35Fq2khGpKXMUiGwdx7TI3C349qol-o9hbVOWxV1UD-HmAalU021ckpwxD2lAhtGmXOyY4wIoytZMt07U1lnO9Z7ih8bl4taxk0aq31FmGRMMEZpVdGdyqSYc3L-7ytG6rsR9duI-tcI_QJPXX9S</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474464433</pqid></control><display><type>article</type><title>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</title><source>Publicly Available Content Database</source><creator>Sidnyaev, Nikolay I. ; Opletina, Nadezhda V. ; Butenko, Yulia I. ; Kazanceva, Elizaveta S.</creator><contributor>Dimitrienko, Y.I. ; Tsvetkov, Y.B. ; Aleksandrov, A.A. ; Padalkin, B.V.</contributor><creatorcontrib>Sidnyaev, Nikolay I. ; Opletina, Nadezhda V. ; Butenko, Yulia I. ; Kazanceva, Elizaveta S. ; Dimitrienko, Y.I. ; Tsvetkov, Y.B. ; Aleksandrov, A.A. ; Padalkin, B.V.</creatorcontrib><description>The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.</description><identifier>ISSN: 2271-2097</identifier><identifier>ISSN: 2431-7578</identifier><identifier>EISSN: 2271-2097</identifier><identifier>DOI: 10.1051/itmconf/20203507005</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Character recognition ; Collection ; Handwriting recognition ; Image quality ; Object recognition</subject><ispartof>ITM web of conferences, 2020, Vol.35, p.7005</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2474464433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,4009,23910,23911,25119,25732,27902,27903,27904,36991,44569</link.rule.ids></links><search><contributor>Dimitrienko, Y.I.</contributor><contributor>Tsvetkov, Y.B.</contributor><contributor>Aleksandrov, A.A.</contributor><contributor>Padalkin, B.V.</contributor><creatorcontrib>Sidnyaev, Nikolay I.</creatorcontrib><creatorcontrib>Opletina, Nadezhda V.</creatorcontrib><creatorcontrib>Butenko, Yulia I.</creatorcontrib><creatorcontrib>Kazanceva, Elizaveta S.</creatorcontrib><title>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</title><title>ITM web of conferences</title><description>The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.</description><subject>Character recognition</subject><subject>Collection</subject><subject>Handwriting recognition</subject><subject>Image quality</subject><subject>Object recognition</subject><issn>2271-2097</issn><issn>2431-7578</issn><issn>2271-2097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhYMoWNRf4CbgejTvzCyl-IKKohbdhUwe05R2okkK9t8brYire7kcvnsOB4BTjM4x4vgilLWJo78giCDKkUSI74EJIRI3BHVy_99-CE5yXiKEMG8FJmIC3h5T7HW_2jbPRZeQSzB6Be9dWUQLfUzwNYVS3AifwzBm-ORMHMZQQhzhPIdxgGXhqlznTXIwelhxn2EdyvYYHHi9yu7kdx6B-fXVy_S2mT3c3E0vZ43BLeWN5ryjbd-2ou87onlvO0O6GstaJHqEW-sp5s5K35Fq2khGpKXMUiGwdx7TI3C349qol-o9hbVOWxV1UD-HmAalU021ckpwxD2lAhtGmXOyY4wIoytZMt07U1lnO9Z7ih8bl4taxk0aq31FmGRMMEZpVdGdyqSYc3L-7ytG6rsR9duI-tcI_QJPXX9S</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sidnyaev, Nikolay I.</creator><creator>Opletina, Nadezhda V.</creator><creator>Butenko, Yulia I.</creator><creator>Kazanceva, Elizaveta S.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</title><author>Sidnyaev, Nikolay I. ; Opletina, Nadezhda V. ; Butenko, Yulia I. ; Kazanceva, Elizaveta S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Character recognition</topic><topic>Collection</topic><topic>Handwriting recognition</topic><topic>Image quality</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidnyaev, Nikolay I.</creatorcontrib><creatorcontrib>Opletina, Nadezhda V.</creatorcontrib><creatorcontrib>Butenko, Yulia I.</creatorcontrib><creatorcontrib>Kazanceva, Elizaveta S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ITM web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidnyaev, Nikolay I.</au><au>Opletina, Nadezhda V.</au><au>Butenko, Yulia I.</au><au>Kazanceva, Elizaveta S.</au><au>Dimitrienko, Y.I.</au><au>Tsvetkov, Y.B.</au><au>Aleksandrov, A.A.</au><au>Padalkin, B.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</atitle><jtitle>ITM web of conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>35</volume><spage>7005</spage><pages>7005-</pages><issn>2271-2097</issn><issn>2431-7578</issn><eissn>2271-2097</eissn><abstract>The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/itmconf/20203507005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2271-2097
ispartof ITM web of conferences, 2020, Vol.35, p.7005
issn 2271-2097
2431-7578
2271-2097
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6505f3361c434ee794426caf9274abec
source Publicly Available Content Database
subjects Character recognition
Collection
Handwriting recognition
Image quality
Object recognition
title Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probably-Statistical%20Method%20for%20Written%20Signs%20Recognition%20Using%20the%20Measure%20of%20Proximity&rft.jtitle=ITM%20web%20of%20conferences&rft.au=Sidnyaev,%20Nikolay%20I.&rft.date=2020&rft.volume=35&rft.spage=7005&rft.pages=7005-&rft.issn=2271-2097&rft.eissn=2271-2097&rft_id=info:doi/10.1051/itmconf/20203507005&rft_dat=%3Cproquest_doaj_%3E2474464433%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474464433&rft_id=info:pmid/&rfr_iscdi=true