Loading…
Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity
The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the bes...
Saved in:
Published in: | ITM web of conferences 2020, Vol.35, p.7005 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13 |
container_end_page | |
container_issue | |
container_start_page | 7005 |
container_title | ITM web of conferences |
container_volume | 35 |
creator | Sidnyaev, Nikolay I. Opletina, Nadezhda V. Butenko, Yulia I. Kazanceva, Elizaveta S. |
description | The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”. |
doi_str_mv | 10.1051/itmconf/20203507005 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6505f3361c434ee794426caf9274abec</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6505f3361c434ee794426caf9274abec</doaj_id><sourcerecordid>2474464433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhYMoWNRf4CbgejTvzCyl-IKKohbdhUwe05R2okkK9t8brYire7kcvnsOB4BTjM4x4vgilLWJo78giCDKkUSI74EJIRI3BHVy_99-CE5yXiKEMG8FJmIC3h5T7HW_2jbPRZeQSzB6Be9dWUQLfUzwNYVS3AifwzBm-ORMHMZQQhzhPIdxgGXhqlznTXIwelhxn2EdyvYYHHi9yu7kdx6B-fXVy_S2mT3c3E0vZ43BLeWN5ryjbd-2ou87onlvO0O6GstaJHqEW-sp5s5K35Fq2khGpKXMUiGwdx7TI3C349qol-o9hbVOWxV1UD-HmAalU021ckpwxD2lAhtGmXOyY4wIoytZMt07U1lnO9Z7ih8bl4taxk0aq31FmGRMMEZpVdGdyqSYc3L-7ytG6rsR9duI-tcI_QJPXX9S</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474464433</pqid></control><display><type>article</type><title>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</title><source>Publicly Available Content Database</source><creator>Sidnyaev, Nikolay I. ; Opletina, Nadezhda V. ; Butenko, Yulia I. ; Kazanceva, Elizaveta S.</creator><contributor>Dimitrienko, Y.I. ; Tsvetkov, Y.B. ; Aleksandrov, A.A. ; Padalkin, B.V.</contributor><creatorcontrib>Sidnyaev, Nikolay I. ; Opletina, Nadezhda V. ; Butenko, Yulia I. ; Kazanceva, Elizaveta S. ; Dimitrienko, Y.I. ; Tsvetkov, Y.B. ; Aleksandrov, A.A. ; Padalkin, B.V.</creatorcontrib><description>The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.</description><identifier>ISSN: 2271-2097</identifier><identifier>ISSN: 2431-7578</identifier><identifier>EISSN: 2271-2097</identifier><identifier>DOI: 10.1051/itmconf/20203507005</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Character recognition ; Collection ; Handwriting recognition ; Image quality ; Object recognition</subject><ispartof>ITM web of conferences, 2020, Vol.35, p.7005</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2474464433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,4009,23910,23911,25119,25732,27902,27903,27904,36991,44569</link.rule.ids></links><search><contributor>Dimitrienko, Y.I.</contributor><contributor>Tsvetkov, Y.B.</contributor><contributor>Aleksandrov, A.A.</contributor><contributor>Padalkin, B.V.</contributor><creatorcontrib>Sidnyaev, Nikolay I.</creatorcontrib><creatorcontrib>Opletina, Nadezhda V.</creatorcontrib><creatorcontrib>Butenko, Yulia I.</creatorcontrib><creatorcontrib>Kazanceva, Elizaveta S.</creatorcontrib><title>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</title><title>ITM web of conferences</title><description>The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.</description><subject>Character recognition</subject><subject>Collection</subject><subject>Handwriting recognition</subject><subject>Image quality</subject><subject>Object recognition</subject><issn>2271-2097</issn><issn>2431-7578</issn><issn>2271-2097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhYMoWNRf4CbgejTvzCyl-IKKohbdhUwe05R2okkK9t8brYire7kcvnsOB4BTjM4x4vgilLWJo78giCDKkUSI74EJIRI3BHVy_99-CE5yXiKEMG8FJmIC3h5T7HW_2jbPRZeQSzB6Be9dWUQLfUzwNYVS3AifwzBm-ORMHMZQQhzhPIdxgGXhqlznTXIwelhxn2EdyvYYHHi9yu7kdx6B-fXVy_S2mT3c3E0vZ43BLeWN5ryjbd-2ou87onlvO0O6GstaJHqEW-sp5s5K35Fq2khGpKXMUiGwdx7TI3C349qol-o9hbVOWxV1UD-HmAalU021ckpwxD2lAhtGmXOyY4wIoytZMt07U1lnO9Z7ih8bl4taxk0aq31FmGRMMEZpVdGdyqSYc3L-7ytG6rsR9duI-tcI_QJPXX9S</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sidnyaev, Nikolay I.</creator><creator>Opletina, Nadezhda V.</creator><creator>Butenko, Yulia I.</creator><creator>Kazanceva, Elizaveta S.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</title><author>Sidnyaev, Nikolay I. ; Opletina, Nadezhda V. ; Butenko, Yulia I. ; Kazanceva, Elizaveta S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Character recognition</topic><topic>Collection</topic><topic>Handwriting recognition</topic><topic>Image quality</topic><topic>Object recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidnyaev, Nikolay I.</creatorcontrib><creatorcontrib>Opletina, Nadezhda V.</creatorcontrib><creatorcontrib>Butenko, Yulia I.</creatorcontrib><creatorcontrib>Kazanceva, Elizaveta S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ITM web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidnyaev, Nikolay I.</au><au>Opletina, Nadezhda V.</au><au>Butenko, Yulia I.</au><au>Kazanceva, Elizaveta S.</au><au>Dimitrienko, Y.I.</au><au>Tsvetkov, Y.B.</au><au>Aleksandrov, A.A.</au><au>Padalkin, B.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity</atitle><jtitle>ITM web of conferences</jtitle><date>2020</date><risdate>2020</risdate><volume>35</volume><spage>7005</spage><pages>7005-</pages><issn>2271-2097</issn><issn>2431-7578</issn><eissn>2271-2097</eissn><abstract>The paper describes ways to recognize written signs when the nature of the source is absolutely unclear and the seemingly obvious possibilities for solving the problem are not clear as well. The article deals with methods of recognition of binary images in order to compare them and highlight the best. The images of documents are obtained with the help of a camera. The quality is low. The images of the collection were segmented and passed binaryization. A control sample was selected to test the recognition methods from the resulting collection. The paper describes the method of comparing images, their advantages and disadvantages when recognizing handwritten shorthand characters. The results obtained by comparing the characters of the control sample allowed determining the best method “method of comparison of forms”.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/itmconf/20203507005</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2271-2097 |
ispartof | ITM web of conferences, 2020, Vol.35, p.7005 |
issn | 2271-2097 2431-7578 2271-2097 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6505f3361c434ee794426caf9274abec |
source | Publicly Available Content Database |
subjects | Character recognition Collection Handwriting recognition Image quality Object recognition |
title | Probably-Statistical Method for Written Signs Recognition Using the Measure of Proximity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probably-Statistical%20Method%20for%20Written%20Signs%20Recognition%20Using%20the%20Measure%20of%20Proximity&rft.jtitle=ITM%20web%20of%20conferences&rft.au=Sidnyaev,%20Nikolay%20I.&rft.date=2020&rft.volume=35&rft.spage=7005&rft.pages=7005-&rft.issn=2271-2097&rft.eissn=2271-2097&rft_id=info:doi/10.1051/itmconf/20203507005&rft_dat=%3Cproquest_doaj_%3E2474464433%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1835-a55938b886bb92a5bd9c29051dd06b018df315ed7f92158c7427d34d3661fef13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474464433&rft_id=info:pmid/&rfr_iscdi=true |