Loading…

Maternal Chronodisruption Throughout Pregnancy Impairs Glucose Homeostasis and Adipose Tissue Physiology in the Male Rat Offspring

Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in endocrinology (Lausanne) 2021-08, Vol.12, p.678468-678468
Main Authors: Halabi, Diego, Richter, Hans G, Mendez, Natalia, Kähne, Thilo, Spichiger, Carlos, Salazar, Esteban, Torres, Fabiola, Vergara, Karina, Seron-Ferre, Maria, Torres-Farfan, Claudia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in which pregnant female rats (Sprague-Dawley strain; = 16 per group) were exposed to lighting schedule manipulation every 3-4 days reversing the photoperiod completely or light/dark photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain, glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine (NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in response to high-fat diet (HFD). In adult CPS male (100-200 days old; = 8 per group), we found increasing body weight, under SD and adiposity. Also, we found an increased response to intraperitoneal glucose (IGTT). After 12 weeks of HFD, white adipose tissue depots in CPS offspring were increased further, and higher IGTT and lower intraperitoneal insulin tolerance response were found, despite the lack of changes in food intake. In experiments, we observed that adipose tissue (WAT and BAT) glycerol response to NE from CPS offspring was decreased, and it was completely abolished by HFD. At the proteomic level, in CPS adipose tissue, 275 proteins displayed differential expression, compared with LD animals fed with a standard diet. Interestingly, CPS offspring and LD fed with HFD showed 20 proteins in common (2 upregulated and 18 downregulated). Based on these common proteins, the IPA analysis found that two functional pathways were significantly altered by CPS: network 1 (AKT/ERK) and network 2 (TNF/IL4; data are available ProteomeXchange with identifier PXD026315). The present data show that gestational chronodisruption induced deleterious effects in adipose tissue recruitment and function, supporting the idea that adipose tissue function was programmed by gestational chronodisruption, inducing deficient metabolic responses that persist into adulthood.
ISSN:1664-2392
1664-2392
DOI:10.3389/fendo.2021.678468