Loading…

New Bactericide Orthodonthic Archwire: NiTi with Silver Nanoparticles

A potential new bactericide treatment for NiTi orthodontic archwires based in the electrodeposition of silver nanoparticles on the surface was studied. Twenty-five archwires were treated by electrodeposition, obtaining nanoparticles of silver embedded on the archwire surface. These were evaluated in...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2020-06, Vol.10 (6), p.702
Main Authors: Gil, F. Javier, Espinar-Escalona, Eduardo, Clusellas, Nuria, Fernandez-Bozal, Javier, Artes-Ribas, Montserrat, Puigdollers, Andreu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A potential new bactericide treatment for NiTi orthodontic archwires based in the electrodeposition of silver nanoparticles on the surface was studied. Twenty-five archwires were treated by electrodeposition, obtaining nanoparticles of silver embedded on the archwire surface. These were evaluated in order to investigate the possible changes on the superelastic characteristics (critical temperatures and stresses), the nickel ion release, and the bacteria culture behavior. The chemical composition was analyzed by Energy Dispersive X-Ray Spectroscopy-microanalysis; the singular temperatures of the martensitic transformation were obtained by a flow calorimeter. Induced martensitic transformation stresses were obtained by mechanical testing apparatus. Nickel ion release was analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) equipment using artificial saliva solution at 37 °C. Bacterial tests were studied with the most used oral bacterial strains: Streptococcus sanguinis and Lactobacillus salivarius. NiTi samples were immersed in bacterial suspensions for 2 h at 37 °C. Adhered bacteria were separated and seeded on agar plates: Tood-Hewitt (TH) and Man-Rogosa-Sharpe (MRS) for S. sanguinis and for L.salivarius, respectively. These were then incubated at 37 °C for 1 day and the colonies were analyzed. The results showed that the transformation temperatures and the critical stresses have not statistically significant differences. Likewise, nickel ion release at different immersion times in saliva at 37 °C does not present changes between the original and treated with silver nanoparticles archwires. Bacteria culture results showed that the reduction of the bacteria due to the presence to the nanoparticles of silver is higher than 90%. Consequently, the new treatment with nanoparticles of silver could be a good candidate as bactericidic orthodontic archwire.
ISSN:2075-4701
2075-4701
DOI:10.3390/met10060702