Loading…

On Invariant Operations on a Manifold with a Linear Connection and an Orientation

We prove a theorem that describes all possible tensor-valued natural operations in the presence of a linear connection and an orientation in terms of certain linear representations of the special linear group. As an application of this result, we prove a characterization of the torsion and curvature...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-10, Vol.9 (20), p.2577
Main Authors: Gordillo-Merino, Adrián, Martínez-Bohórquez, Raúl, Navarro-Garmendia, José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3
cites cdi_FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3
container_end_page
container_issue 20
container_start_page 2577
container_title Mathematics (Basel)
container_volume 9
creator Gordillo-Merino, Adrián
Martínez-Bohórquez, Raúl
Navarro-Garmendia, José
description We prove a theorem that describes all possible tensor-valued natural operations in the presence of a linear connection and an orientation in terms of certain linear representations of the special linear group. As an application of this result, we prove a characterization of the torsion and curvature operators as the only natural operators that satisfy the Bianchi identities.
doi_str_mv 10.3390/math9202577
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_652e36dde5ad401aadaa3b599fac3483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_652e36dde5ad401aadaa3b599fac3483</doaj_id><sourcerecordid>2584397918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3</originalsourceid><addsrcrecordid>eNpNUdtKAzEQDaJgqX3yBwI-SjWX3c3mUYqXQmUR9DnM5mJT2qRmU8W_N7YiHRhm5nDmzIFB6JKSG84lud1AXkpGWC3ECRoxxsRUFPz0qD9Hk2FYkRKS8raSI_TSBTwPn5A8hIy7rU2QfQwDjgEDfobgXVwb_OXzsswLHywkPIshWP3LwxBMSdwlb0Per16gMwfrwU7-6hi9Pdy_zp6mi-5xPrtbTDVvqjwVrIEKignXWMMYMAo1ECGJsZWRrm16C0y3oqcNAcqZdUaSnmtpNJWWOj5G84OuibBS2-Q3kL5VBK_2QEzvClL2em1VUzPLG2NsDaYiFMAA8L6W0oHmVcuL1tVBa5vix84OWa3iLoViX7G6rbgUkraFdX1g6RSHIVn3f5US9fsCdfQC_gPn2Xkh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584397918</pqid></control><display><type>article</type><title>On Invariant Operations on a Manifold with a Linear Connection and an Orientation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gordillo-Merino, Adrián ; Martínez-Bohórquez, Raúl ; Navarro-Garmendia, José</creator><creatorcontrib>Gordillo-Merino, Adrián ; Martínez-Bohórquez, Raúl ; Navarro-Garmendia, José</creatorcontrib><description>We prove a theorem that describes all possible tensor-valued natural operations in the presence of a linear connection and an orientation in terms of certain linear representations of the special linear group. As an application of this result, we prove a characterization of the torsion and curvature operators as the only natural operators that satisfy the Bianchi identities.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9202577</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>curvature operator ; Geometry ; linear connections ; Mathematical functions ; Mathematics ; natural tensors ; Neighborhoods ; Operators ; Orbits ; Quantum field theory ; Tensors ; Theory of relativity ; torsion tensor</subject><ispartof>Mathematics (Basel), 2021-10, Vol.9 (20), p.2577</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3</citedby><cites>FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3</cites><orcidid>0000-0002-6133-3445 ; 0000-0001-5257-176X ; 0000-0002-2383-5292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2584397918/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2584397918?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><creatorcontrib>Gordillo-Merino, Adrián</creatorcontrib><creatorcontrib>Martínez-Bohórquez, Raúl</creatorcontrib><creatorcontrib>Navarro-Garmendia, José</creatorcontrib><title>On Invariant Operations on a Manifold with a Linear Connection and an Orientation</title><title>Mathematics (Basel)</title><description>We prove a theorem that describes all possible tensor-valued natural operations in the presence of a linear connection and an orientation in terms of certain linear representations of the special linear group. As an application of this result, we prove a characterization of the torsion and curvature operators as the only natural operators that satisfy the Bianchi identities.</description><subject>curvature operator</subject><subject>Geometry</subject><subject>linear connections</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>natural tensors</subject><subject>Neighborhoods</subject><subject>Operators</subject><subject>Orbits</subject><subject>Quantum field theory</subject><subject>Tensors</subject><subject>Theory of relativity</subject><subject>torsion tensor</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKAzEQDaJgqX3yBwI-SjWX3c3mUYqXQmUR9DnM5mJT2qRmU8W_N7YiHRhm5nDmzIFB6JKSG84lud1AXkpGWC3ECRoxxsRUFPz0qD9Hk2FYkRKS8raSI_TSBTwPn5A8hIy7rU2QfQwDjgEDfobgXVwb_OXzsswLHywkPIshWP3LwxBMSdwlb0Per16gMwfrwU7-6hi9Pdy_zp6mi-5xPrtbTDVvqjwVrIEKignXWMMYMAo1ECGJsZWRrm16C0y3oqcNAcqZdUaSnmtpNJWWOj5G84OuibBS2-Q3kL5VBK_2QEzvClL2em1VUzPLG2NsDaYiFMAA8L6W0oHmVcuL1tVBa5vix84OWa3iLoViX7G6rbgUkraFdX1g6RSHIVn3f5US9fsCdfQC_gPn2Xkh</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Gordillo-Merino, Adrián</creator><creator>Martínez-Bohórquez, Raúl</creator><creator>Navarro-Garmendia, José</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6133-3445</orcidid><orcidid>https://orcid.org/0000-0001-5257-176X</orcidid><orcidid>https://orcid.org/0000-0002-2383-5292</orcidid></search><sort><creationdate>20211001</creationdate><title>On Invariant Operations on a Manifold with a Linear Connection and an Orientation</title><author>Gordillo-Merino, Adrián ; Martínez-Bohórquez, Raúl ; Navarro-Garmendia, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>curvature operator</topic><topic>Geometry</topic><topic>linear connections</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>natural tensors</topic><topic>Neighborhoods</topic><topic>Operators</topic><topic>Orbits</topic><topic>Quantum field theory</topic><topic>Tensors</topic><topic>Theory of relativity</topic><topic>torsion tensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordillo-Merino, Adrián</creatorcontrib><creatorcontrib>Martínez-Bohórquez, Raúl</creatorcontrib><creatorcontrib>Navarro-Garmendia, José</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordillo-Merino, Adrián</au><au>Martínez-Bohórquez, Raúl</au><au>Navarro-Garmendia, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Invariant Operations on a Manifold with a Linear Connection and an Orientation</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>9</volume><issue>20</issue><spage>2577</spage><pages>2577-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>We prove a theorem that describes all possible tensor-valued natural operations in the presence of a linear connection and an orientation in terms of certain linear representations of the special linear group. As an application of this result, we prove a characterization of the torsion and curvature operators as the only natural operators that satisfy the Bianchi identities.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9202577</doi><orcidid>https://orcid.org/0000-0002-6133-3445</orcidid><orcidid>https://orcid.org/0000-0001-5257-176X</orcidid><orcidid>https://orcid.org/0000-0002-2383-5292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-10, Vol.9 (20), p.2577
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_652e36dde5ad401aadaa3b599fac3483
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects curvature operator
Geometry
linear connections
Mathematical functions
Mathematics
natural tensors
Neighborhoods
Operators
Orbits
Quantum field theory
Tensors
Theory of relativity
torsion tensor
title On Invariant Operations on a Manifold with a Linear Connection and an Orientation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Invariant%20Operations%20on%20a%20Manifold%20with%20a%20Linear%20Connection%20and%20an%20Orientation&rft.jtitle=Mathematics%20(Basel)&rft.au=Gordillo-Merino,%20Adri%C3%A1n&rft.date=2021-10-01&rft.volume=9&rft.issue=20&rft.spage=2577&rft.pages=2577-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9202577&rft_dat=%3Cproquest_doaj_%3E2584397918%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-726a4a384f6ed22a21a5a0790de4d9f86bea2c87b160a132efd90b3c9dc19e1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584397918&rft_id=info:pmid/&rfr_iscdi=true