Loading…

Formulation and Physical Characterization of a Polysaccharidic Gel for the Vehiculation of an Insoluble Phytoextract for Mucosal Application

Maintaining insoluble plant-based ingredients in suspension and ensuring long-term physical stability is particularly challenging for formulators of green cosmetics. This study aimed to evaluate the structure and applicative properties of gel and gel-cream topical formulations suitable for deliverin...

Full description

Saved in:
Bibliographic Details
Published in:Polysaccharides 2022-12, Vol.3 (4), p.728-744
Main Authors: Pressi, Giovanna, Barbieri, Elisa, Rizzi, Raffaella, Tafuro, Giovanni, Costantini, Alessia, Di Domenico, Elisa, Semenzato, Alessandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Maintaining insoluble plant-based ingredients in suspension and ensuring long-term physical stability is particularly challenging for formulators of green cosmetics. This study aimed to evaluate the structure and applicative properties of gel and gel-cream topical formulations suitable for delivering an insoluble phytocomplex on the vaginal mucosa and maintaining its integrity. For this purpose, we studied the compatibility of Perilla frutescens (L.) Britton phytocomplex (PFP), derived from in vitro plant cell cultures and presented as a powder finely dispersed in glycerin, with different classes of natural rheological modifiers (such as xanthan gum, sclerotium gum, succinoglycan, xyloglucan, diutan gum, hydroxypropyl guar gum derivative) in gel and gel-cream formulations, to meet the needs of the cosmetic market for naturalness and biodegradability. Through rheological and texture analyses, we studied the physico–mechanical properties of the samples, comparing the performances of the chosen polysaccharides to those of acrylic polymeric rheological modifiers, evaluating their contribution in terms of stability and applicative properties. Since a weak-gel rheological pattern proved to be the optimal one to keep the actives in suspension, the associations of tamarind seed polysaccharides with succinoglycan or scleroglucan were the most suitable for the formulation of mucoadhesive gels.
ISSN:2673-4176
2673-4176
DOI:10.3390/polysaccharides3040042