Loading…
Optical Hydrogen Sensing Properties of e-Beam WO3 Films Decorated with Gold Nanoparticles
Tungsten oxide thin films with different thicknesses, crystallinity and morphology were synthesized by e-beam deposition followed by thermal treatment and acid boiling. The films with different surface morphologies were coated with gold nanoparticles and tested as optical sensing materials towards h...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2023-02, Vol.23 (4), p.1936 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tungsten oxide thin films with different thicknesses, crystallinity and morphology were synthesized by e-beam deposition followed by thermal treatment and acid boiling. The films with different surface morphologies were coated with gold nanoparticles and tested as optical sensing materials towards hydrogen. X-ray diffraction, scanning electron microscopy, ellipsometry and UV-VIS spectroscopy were employed to characterize the structural, morphological and optical properties of the film. We demonstrated a good response towards hydrogen in air, reaching a good selectivity among other common reducing gases, such as ammonia and carbon monoxide. The sensitivity has been proven to be highly dependent on the thickness and crystallinity of the samples. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23041936 |