Loading…

Mitochondrial genome evolution in parasitic plants

Parasitic plants rely on their host to cover their nutritional requirements either for their entire life or a smaller part of it. Depending on the level of parasitism, a proportional reduction on the plastid genome has been found. However, knowledge on gene loss and evolution of the mitogenome of pa...

Full description

Saved in:
Bibliographic Details
Published in:BMC ecology and evolution 2019-04, Vol.19 (1), p.87-87, Article 87
Main Authors: Zervas, Athanasios, Petersen, Gitte, Seberg, Ole
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13
cites cdi_FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13
container_end_page 87
container_issue 1
container_start_page 87
container_title BMC ecology and evolution
container_volume 19
creator Zervas, Athanasios
Petersen, Gitte
Seberg, Ole
description Parasitic plants rely on their host to cover their nutritional requirements either for their entire life or a smaller part of it. Depending on the level of parasitism, a proportional reduction on the plastid genome has been found. However, knowledge on gene loss and evolution of the mitogenome of parasitic plants is only available for four hemiparasitic Viscum species (Viscaceae), which lack many of the mitochondrial genes, while the remaining genes exhibit very fast molecular evolution rates. In this study, we include another genus, Phoradendron, from the Viscaceae, as well as 10 other hemiparasitic or holoparasitic taxa from across the phylogeny of the angiosperms to investigate how fast molecular evolution works on their mitogenomes, and the extent of gene loss. Our observations from Viscum were replicated in Phoradendron liga, whereas the remaining parasitic plants in the study have a complete set of the core mitochondrial genes and exhibit moderate or only slightly raised substitution rates compared to most autotrophic taxa, without any statistically significant difference between the different groups (autotrophs, hemiparasites and holoparasites). Additionally, further evidence is provided for the placement of Balanophoraceae within the order Santalales, while the exact placement of Cynomoriaceae still remains elusive. We examine the mitochondrial gene content of 11 hemiparasitic and holoparasitic plants and confirm previous observations in Viscaceae. We show that the remaining parasitic plants do not have significantly higher substitution rates than autotrophic plants in their mitochondrial genes. We provide further evidence for the placement of Balanophoraceae in the Santalales.
doi_str_mv 10.1186/s12862-019-1401-8
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_658ac78465c849c6a03c0eb6cf338125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A583171341</galeid><doaj_id>oai_doaj_org_article_658ac78465c849c6a03c0eb6cf338125</doaj_id><sourcerecordid>A583171341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEoqXwA9igSGzKIsXX72yQqorHSEVIPNaWYzupR4k92EkF_x4PU6oJQsgLW9ffPb4-OlX1HNAFgOSvM2DJcYOgbYAiaOSD6hSogAYDlQ-PzifVk5y3CIGQGB5XJwS1HBhhpxX-6OdobmKwyeuxHlyIk6vdbRyX2cdQ-1DvdNLZz97Uu1GHOT-tHvV6zO7Z3X5WfXv39uvVh-b60_vN1eV1YzjGc6OlFkBM11tMBTI9F8hy3RPsuBDCWgKoRWCZc0QwaVknHLMWd0yWqjBAzqrNQddGvVW75CedfqqovfpdiGlQOpWxRqc4k9oISTkzkraGa0QMch03PSESMCtabw5au6WbnDUuzEmPK9H1TfA3aoi3ilNWpqdF4PxOIMXvi8uzmnw2biyOuLhkhTEqv-aMk4K-_AvdxiWFYpXCjHIu21b-n8IAmIBER9Sgyzd96GOZzuyfVpdMEigO071TF_-gyrJu8iYG1_tSXzW8WjUUZnY_5kEvOavNl89rFg6sSTHn5Pp71wCpfQzVIYaqxFDtY6hk6XlxbPd9x5_ckV_6adOt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211231803</pqid></control><display><type>article</type><title>Mitochondrial genome evolution in parasitic plants</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zervas, Athanasios ; Petersen, Gitte ; Seberg, Ole</creator><creatorcontrib>Zervas, Athanasios ; Petersen, Gitte ; Seberg, Ole</creatorcontrib><description>Parasitic plants rely on their host to cover their nutritional requirements either for their entire life or a smaller part of it. Depending on the level of parasitism, a proportional reduction on the plastid genome has been found. However, knowledge on gene loss and evolution of the mitogenome of parasitic plants is only available for four hemiparasitic Viscum species (Viscaceae), which lack many of the mitochondrial genes, while the remaining genes exhibit very fast molecular evolution rates. In this study, we include another genus, Phoradendron, from the Viscaceae, as well as 10 other hemiparasitic or holoparasitic taxa from across the phylogeny of the angiosperms to investigate how fast molecular evolution works on their mitogenomes, and the extent of gene loss. Our observations from Viscum were replicated in Phoradendron liga, whereas the remaining parasitic plants in the study have a complete set of the core mitochondrial genes and exhibit moderate or only slightly raised substitution rates compared to most autotrophic taxa, without any statistically significant difference between the different groups (autotrophs, hemiparasites and holoparasites). Additionally, further evidence is provided for the placement of Balanophoraceae within the order Santalales, while the exact placement of Cynomoriaceae still remains elusive. We examine the mitochondrial gene content of 11 hemiparasitic and holoparasitic plants and confirm previous observations in Viscaceae. We show that the remaining parasitic plants do not have significantly higher substitution rates than autotrophic plants in their mitochondrial genes. We provide further evidence for the placement of Balanophoraceae in the Santalales.</description><identifier>ISSN: 1471-2148</identifier><identifier>EISSN: 1471-2148</identifier><identifier>EISSN: 2730-7182</identifier><identifier>DOI: 10.1186/s12862-019-1401-8</identifier><identifier>PMID: 30961535</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Analysis of Variance ; Angiosperms ; Autotrophs ; Balanophoraceae ; Bioinformatics ; Biological evolution ; Chloroplasts ; Deoxyribonucleic acid ; DNA ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Evolutionary genetics ; Genes ; Genes, Mitochondrial ; Genes, Plant ; Genetic aspects ; Genetic research ; Genome, Mitochondrial ; Genomes ; Genomics ; Magnoliopsida - genetics ; Mitochondria ; Molecular evolution ; Museums ; Natural history ; Nutritional requirements ; Parasitic plants ; Parasitism ; Phoradendron ; Photosynthesis ; Phylogenetics ; Phylogeny ; Physiological aspects ; Placement ; Plant evolution ; Plant phylogeny ; Plants - genetics ; Proteins ; Santalales ; Statistical analysis ; Substitutes ; Substitution rates ; Taxa ; Viscaceae ; Viscum</subject><ispartof>BMC ecology and evolution, 2019-04, Vol.19 (1), p.87-87, Article 87</ispartof><rights>COPYRIGHT 2019 BioMed Central Ltd.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>The Author(s). 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13</citedby><cites>FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13</cites><orcidid>0000-0002-4706-4023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2546689983/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2546689983?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30961535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zervas, Athanasios</creatorcontrib><creatorcontrib>Petersen, Gitte</creatorcontrib><creatorcontrib>Seberg, Ole</creatorcontrib><title>Mitochondrial genome evolution in parasitic plants</title><title>BMC ecology and evolution</title><addtitle>BMC Evol Biol</addtitle><description>Parasitic plants rely on their host to cover their nutritional requirements either for their entire life or a smaller part of it. Depending on the level of parasitism, a proportional reduction on the plastid genome has been found. However, knowledge on gene loss and evolution of the mitogenome of parasitic plants is only available for four hemiparasitic Viscum species (Viscaceae), which lack many of the mitochondrial genes, while the remaining genes exhibit very fast molecular evolution rates. In this study, we include another genus, Phoradendron, from the Viscaceae, as well as 10 other hemiparasitic or holoparasitic taxa from across the phylogeny of the angiosperms to investigate how fast molecular evolution works on their mitogenomes, and the extent of gene loss. Our observations from Viscum were replicated in Phoradendron liga, whereas the remaining parasitic plants in the study have a complete set of the core mitochondrial genes and exhibit moderate or only slightly raised substitution rates compared to most autotrophic taxa, without any statistically significant difference between the different groups (autotrophs, hemiparasites and holoparasites). Additionally, further evidence is provided for the placement of Balanophoraceae within the order Santalales, while the exact placement of Cynomoriaceae still remains elusive. We examine the mitochondrial gene content of 11 hemiparasitic and holoparasitic plants and confirm previous observations in Viscaceae. We show that the remaining parasitic plants do not have significantly higher substitution rates than autotrophic plants in their mitochondrial genes. We provide further evidence for the placement of Balanophoraceae in the Santalales.</description><subject>Analysis</subject><subject>Analysis of Variance</subject><subject>Angiosperms</subject><subject>Autotrophs</subject><subject>Balanophoraceae</subject><subject>Bioinformatics</subject><subject>Biological evolution</subject><subject>Chloroplasts</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Genes</subject><subject>Genes, Mitochondrial</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genome, Mitochondrial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Magnoliopsida - genetics</subject><subject>Mitochondria</subject><subject>Molecular evolution</subject><subject>Museums</subject><subject>Natural history</subject><subject>Nutritional requirements</subject><subject>Parasitic plants</subject><subject>Parasitism</subject><subject>Phoradendron</subject><subject>Photosynthesis</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Placement</subject><subject>Plant evolution</subject><subject>Plant phylogeny</subject><subject>Plants - genetics</subject><subject>Proteins</subject><subject>Santalales</subject><subject>Statistical analysis</subject><subject>Substitutes</subject><subject>Substitution rates</subject><subject>Taxa</subject><subject>Viscaceae</subject><subject>Viscum</subject><issn>1471-2148</issn><issn>1471-2148</issn><issn>2730-7182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEoqXwA9igSGzKIsXX72yQqorHSEVIPNaWYzupR4k92EkF_x4PU6oJQsgLW9ffPb4-OlX1HNAFgOSvM2DJcYOgbYAiaOSD6hSogAYDlQ-PzifVk5y3CIGQGB5XJwS1HBhhpxX-6OdobmKwyeuxHlyIk6vdbRyX2cdQ-1DvdNLZz97Uu1GHOT-tHvV6zO7Z3X5WfXv39uvVh-b60_vN1eV1YzjGc6OlFkBM11tMBTI9F8hy3RPsuBDCWgKoRWCZc0QwaVknHLMWd0yWqjBAzqrNQddGvVW75CedfqqovfpdiGlQOpWxRqc4k9oISTkzkraGa0QMch03PSESMCtabw5au6WbnDUuzEmPK9H1TfA3aoi3ilNWpqdF4PxOIMXvi8uzmnw2biyOuLhkhTEqv-aMk4K-_AvdxiWFYpXCjHIu21b-n8IAmIBER9Sgyzd96GOZzuyfVpdMEigO071TF_-gyrJu8iYG1_tSXzW8WjUUZnY_5kEvOavNl89rFg6sSTHn5Pp71wCpfQzVIYaqxFDtY6hk6XlxbPd9x5_ckV_6adOt</recordid><startdate>20190408</startdate><enddate>20190408</enddate><creator>Zervas, Athanasios</creator><creator>Petersen, Gitte</creator><creator>Seberg, Ole</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4706-4023</orcidid></search><sort><creationdate>20190408</creationdate><title>Mitochondrial genome evolution in parasitic plants</title><author>Zervas, Athanasios ; Petersen, Gitte ; Seberg, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Analysis of Variance</topic><topic>Angiosperms</topic><topic>Autotrophs</topic><topic>Balanophoraceae</topic><topic>Bioinformatics</topic><topic>Biological evolution</topic><topic>Chloroplasts</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Genes</topic><topic>Genes, Mitochondrial</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genome, Mitochondrial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Magnoliopsida - genetics</topic><topic>Mitochondria</topic><topic>Molecular evolution</topic><topic>Museums</topic><topic>Natural history</topic><topic>Nutritional requirements</topic><topic>Parasitic plants</topic><topic>Parasitism</topic><topic>Phoradendron</topic><topic>Photosynthesis</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Placement</topic><topic>Plant evolution</topic><topic>Plant phylogeny</topic><topic>Plants - genetics</topic><topic>Proteins</topic><topic>Santalales</topic><topic>Statistical analysis</topic><topic>Substitutes</topic><topic>Substitution rates</topic><topic>Taxa</topic><topic>Viscaceae</topic><topic>Viscum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zervas, Athanasios</creatorcontrib><creatorcontrib>Petersen, Gitte</creatorcontrib><creatorcontrib>Seberg, Ole</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zervas, Athanasios</au><au>Petersen, Gitte</au><au>Seberg, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial genome evolution in parasitic plants</atitle><jtitle>BMC ecology and evolution</jtitle><addtitle>BMC Evol Biol</addtitle><date>2019-04-08</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>87</spage><epage>87</epage><pages>87-87</pages><artnum>87</artnum><issn>1471-2148</issn><eissn>1471-2148</eissn><eissn>2730-7182</eissn><abstract>Parasitic plants rely on their host to cover their nutritional requirements either for their entire life or a smaller part of it. Depending on the level of parasitism, a proportional reduction on the plastid genome has been found. However, knowledge on gene loss and evolution of the mitogenome of parasitic plants is only available for four hemiparasitic Viscum species (Viscaceae), which lack many of the mitochondrial genes, while the remaining genes exhibit very fast molecular evolution rates. In this study, we include another genus, Phoradendron, from the Viscaceae, as well as 10 other hemiparasitic or holoparasitic taxa from across the phylogeny of the angiosperms to investigate how fast molecular evolution works on their mitogenomes, and the extent of gene loss. Our observations from Viscum were replicated in Phoradendron liga, whereas the remaining parasitic plants in the study have a complete set of the core mitochondrial genes and exhibit moderate or only slightly raised substitution rates compared to most autotrophic taxa, without any statistically significant difference between the different groups (autotrophs, hemiparasites and holoparasites). Additionally, further evidence is provided for the placement of Balanophoraceae within the order Santalales, while the exact placement of Cynomoriaceae still remains elusive. We examine the mitochondrial gene content of 11 hemiparasitic and holoparasitic plants and confirm previous observations in Viscaceae. We show that the remaining parasitic plants do not have significantly higher substitution rates than autotrophic plants in their mitochondrial genes. We provide further evidence for the placement of Balanophoraceae in the Santalales.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>30961535</pmid><doi>10.1186/s12862-019-1401-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4706-4023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2148
ispartof BMC ecology and evolution, 2019-04, Vol.19 (1), p.87-87, Article 87
issn 1471-2148
1471-2148
2730-7182
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_658ac78465c849c6a03c0eb6cf338125
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Analysis
Analysis of Variance
Angiosperms
Autotrophs
Balanophoraceae
Bioinformatics
Biological evolution
Chloroplasts
Deoxyribonucleic acid
DNA
Evolution
Evolution, Molecular
Evolutionary biology
Evolutionary genetics
Genes
Genes, Mitochondrial
Genes, Plant
Genetic aspects
Genetic research
Genome, Mitochondrial
Genomes
Genomics
Magnoliopsida - genetics
Mitochondria
Molecular evolution
Museums
Natural history
Nutritional requirements
Parasitic plants
Parasitism
Phoradendron
Photosynthesis
Phylogenetics
Phylogeny
Physiological aspects
Placement
Plant evolution
Plant phylogeny
Plants - genetics
Proteins
Santalales
Statistical analysis
Substitutes
Substitution rates
Taxa
Viscaceae
Viscum
title Mitochondrial genome evolution in parasitic plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20genome%20evolution%20in%20parasitic%20plants&rft.jtitle=BMC%20ecology%20and%20evolution&rft.au=Zervas,%20Athanasios&rft.date=2019-04-08&rft.volume=19&rft.issue=1&rft.spage=87&rft.epage=87&rft.pages=87-87&rft.artnum=87&rft.issn=1471-2148&rft.eissn=1471-2148&rft_id=info:doi/10.1186/s12862-019-1401-8&rft_dat=%3Cgale_doaj_%3EA583171341%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-a8a713cbfd2470cf670d6af32e6777dd310901d5ee3758d5b7e5dd2b5801d7c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211231803&rft_id=info:pmid/30961535&rft_galeid=A583171341&rfr_iscdi=true