Loading…
Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces
We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and i...
Saved in:
Published in: | Abstract and Applied Analysis 2009-01, Vol.2009 (1), p.999-1018 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613 |
---|---|
cites | cdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613 |
container_end_page | 1018 |
container_issue | 1 |
container_start_page | 999 |
container_title | Abstract and Applied Analysis |
container_volume | 2009 |
creator | Plubtieng, Somyot Sriprad, Wanna |
description | We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005). |
doi_str_mv | 10.1155/2009/795432 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_659c756977534d66946a9c1a2afdeb4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_200912_201609010007_201609010007_999_1018</airiti_id><doaj_id>oai_doaj_org_article_659c756977534d66946a9c1a2afdeb4d</doaj_id><sourcerecordid>2284928731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</originalsourceid><addsrcrecordid>eNqFkktvEzEURkcIJEphxR-wWIKG-u3xDoh4REooolQsrRvbkzoMdupx2vLvcTJRUVesbF-de67lz03zkuC3hAhxRjHWZ0oLzuij5oTITrWYY_247nEnWsaUeNo8G8cNxpgpzk-au4uSU1wjiA799PALzVK88Xnto_Uo9WiZXOiDd2gJMaJ58RlKSBH1KaOv_hZ992Mabnws44GGu_AbhtoVU0nRo_PtviHlEYWIPkAEe4UutmD9-Lx50sMw-hfH9bS5_PTxx-xLuzj_PJ-9X7QgqCit6oFB31PGQCqGVyurpeOCd1hIrTvOmAbaC9AYOgxOae4JKMYYF0oRSdhpM5-8LsHGbHO9X_5jEgRzKKS8NpBLsIM3UmirqlYpwbiTUnMJ2hKg0Du_4q663k2ubU4bb4vf2SG4B9LZ5eJYPS4AYAitSXAhOloVr-4V1zs_FrNJuxzrC5hOCEo0Z7xCbybI5jSO2ff3Iwg2-6DNPmgzBV3p1xN9FaKD2_AfeDnBEHIo4d_0bxQTiTsqMCaHDkLNoaQxqb9FPTxorauedOwv3Fe7Mw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855219434</pqid></control><display><type>article</type><title>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Plubtieng, Somyot ; Sriprad, Wanna</creator><contributor>Hirano, Norimichi</contributor><creatorcontrib>Plubtieng, Somyot ; Sriprad, Wanna ; Hirano, Norimichi</creatorcontrib><description>We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2009/795432</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Algorithms ; Banach spaces ; Mathematics ; Studies</subject><ispartof>Abstract and Applied Analysis, 2009-01, Vol.2009 (1), p.999-1018</ispartof><rights>Copyright © 2009</rights><rights>Copyright © 2009 Somyot Plubtieng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2009 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</citedby><cites>FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/855219434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/855219434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Hirano, Norimichi</contributor><creatorcontrib>Plubtieng, Somyot</creatorcontrib><creatorcontrib>Sriprad, Wanna</creatorcontrib><title>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</title><title>Abstract and Applied Analysis</title><description>We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).</description><subject>Algorithms</subject><subject>Banach spaces</subject><subject>Mathematics</subject><subject>Studies</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktvEzEURkcIJEphxR-wWIKG-u3xDoh4REooolQsrRvbkzoMdupx2vLvcTJRUVesbF-de67lz03zkuC3hAhxRjHWZ0oLzuij5oTITrWYY_247nEnWsaUeNo8G8cNxpgpzk-au4uSU1wjiA799PALzVK88Xnto_Uo9WiZXOiDd2gJMaJ58RlKSBH1KaOv_hZ992Mabnws44GGu_AbhtoVU0nRo_PtviHlEYWIPkAEe4UutmD9-Lx50sMw-hfH9bS5_PTxx-xLuzj_PJ-9X7QgqCit6oFB31PGQCqGVyurpeOCd1hIrTvOmAbaC9AYOgxOae4JKMYYF0oRSdhpM5-8LsHGbHO9X_5jEgRzKKS8NpBLsIM3UmirqlYpwbiTUnMJ2hKg0Du_4q663k2ubU4bb4vf2SG4B9LZ5eJYPS4AYAitSXAhOloVr-4V1zs_FrNJuxzrC5hOCEo0Z7xCbybI5jSO2ff3Iwg2-6DNPmgzBV3p1xN9FaKD2_AfeDnBEHIo4d_0bxQTiTsqMCaHDkLNoaQxqb9FPTxorauedOwv3Fe7Mw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Plubtieng, Somyot</creator><creator>Sriprad, Wanna</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20090101</creationdate><title>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</title><author>Plubtieng, Somyot ; Sriprad, Wanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Banach spaces</topic><topic>Mathematics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plubtieng, Somyot</creatorcontrib><creatorcontrib>Sriprad, Wanna</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plubtieng, Somyot</au><au>Sriprad, Wanna</au><au>Hirano, Norimichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>999</spage><epage>1018</epage><pages>999-1018</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2009/795432</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2009-01, Vol.2009 (1), p.999-1018 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_659c756977534d66946a9c1a2afdeb4d |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Algorithms Banach spaces Mathematics Studies |
title | Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20Weak%20Convergence%20of%20Modified%20Mann%20Iteration%20for%20New%20Resolvents%20of%20Maximal%20Monotone%20Operators%20in%20Banach%20Spaces&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Plubtieng,%20Somyot&rft.date=2009-01-01&rft.volume=2009&rft.issue=1&rft.spage=999&rft.epage=1018&rft.pages=999-1018&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2009/795432&rft_dat=%3Cproquest_doaj_%3E2284928731%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855219434&rft_id=info:pmid/&rft_airiti_id=P20160825001_200912_201609010007_201609010007_999_1018&rfr_iscdi=true |