Loading…

Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces

We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and i...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2009-01, Vol.2009 (1), p.999-1018
Main Authors: Plubtieng, Somyot, Sriprad, Wanna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613
cites cdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613
container_end_page 1018
container_issue 1
container_start_page 999
container_title Abstract and Applied Analysis
container_volume 2009
creator Plubtieng, Somyot
Sriprad, Wanna
description We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).
doi_str_mv 10.1155/2009/795432
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_659c756977534d66946a9c1a2afdeb4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_200912_201609010007_201609010007_999_1018</airiti_id><doaj_id>oai_doaj_org_article_659c756977534d66946a9c1a2afdeb4d</doaj_id><sourcerecordid>2284928731</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</originalsourceid><addsrcrecordid>eNqFkktvEzEURkcIJEphxR-wWIKG-u3xDoh4REooolQsrRvbkzoMdupx2vLvcTJRUVesbF-de67lz03zkuC3hAhxRjHWZ0oLzuij5oTITrWYY_247nEnWsaUeNo8G8cNxpgpzk-au4uSU1wjiA799PALzVK88Xnto_Uo9WiZXOiDd2gJMaJ58RlKSBH1KaOv_hZ992Mabnws44GGu_AbhtoVU0nRo_PtviHlEYWIPkAEe4UutmD9-Lx50sMw-hfH9bS5_PTxx-xLuzj_PJ-9X7QgqCit6oFB31PGQCqGVyurpeOCd1hIrTvOmAbaC9AYOgxOae4JKMYYF0oRSdhpM5-8LsHGbHO9X_5jEgRzKKS8NpBLsIM3UmirqlYpwbiTUnMJ2hKg0Du_4q663k2ubU4bb4vf2SG4B9LZ5eJYPS4AYAitSXAhOloVr-4V1zs_FrNJuxzrC5hOCEo0Z7xCbybI5jSO2ff3Iwg2-6DNPmgzBV3p1xN9FaKD2_AfeDnBEHIo4d_0bxQTiTsqMCaHDkLNoaQxqb9FPTxorauedOwv3Fe7Mw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855219434</pqid></control><display><type>article</type><title>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Plubtieng, Somyot ; Sriprad, Wanna</creator><contributor>Hirano, Norimichi</contributor><creatorcontrib>Plubtieng, Somyot ; Sriprad, Wanna ; Hirano, Norimichi</creatorcontrib><description>We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2009/795432</identifier><language>eng</language><publisher>New York: Hindawi Limiteds</publisher><subject>Algorithms ; Banach spaces ; Mathematics ; Studies</subject><ispartof>Abstract and Applied Analysis, 2009-01, Vol.2009 (1), p.999-1018</ispartof><rights>Copyright © 2009</rights><rights>Copyright © 2009 Somyot Plubtieng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2009 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</citedby><cites>FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/855219434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/855219434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Hirano, Norimichi</contributor><creatorcontrib>Plubtieng, Somyot</creatorcontrib><creatorcontrib>Sriprad, Wanna</creatorcontrib><title>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</title><title>Abstract and Applied Analysis</title><description>We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).</description><subject>Algorithms</subject><subject>Banach spaces</subject><subject>Mathematics</subject><subject>Studies</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkktvEzEURkcIJEphxR-wWIKG-u3xDoh4REooolQsrRvbkzoMdupx2vLvcTJRUVesbF-de67lz03zkuC3hAhxRjHWZ0oLzuij5oTITrWYY_247nEnWsaUeNo8G8cNxpgpzk-au4uSU1wjiA799PALzVK88Xnto_Uo9WiZXOiDd2gJMaJ58RlKSBH1KaOv_hZ992Mabnws44GGu_AbhtoVU0nRo_PtviHlEYWIPkAEe4UutmD9-Lx50sMw-hfH9bS5_PTxx-xLuzj_PJ-9X7QgqCit6oFB31PGQCqGVyurpeOCd1hIrTvOmAbaC9AYOgxOae4JKMYYF0oRSdhpM5-8LsHGbHO9X_5jEgRzKKS8NpBLsIM3UmirqlYpwbiTUnMJ2hKg0Du_4q663k2ubU4bb4vf2SG4B9LZ5eJYPS4AYAitSXAhOloVr-4V1zs_FrNJuxzrC5hOCEo0Z7xCbybI5jSO2ff3Iwg2-6DNPmgzBV3p1xN9FaKD2_AfeDnBEHIo4d_0bxQTiTsqMCaHDkLNoaQxqb9FPTxorauedOwv3Fe7Mw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Plubtieng, Somyot</creator><creator>Sriprad, Wanna</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20090101</creationdate><title>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</title><author>Plubtieng, Somyot ; Sriprad, Wanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Banach spaces</topic><topic>Mathematics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plubtieng, Somyot</creatorcontrib><creatorcontrib>Sriprad, Wanna</creatorcontrib><collection>Airiti Library</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plubtieng, Somyot</au><au>Sriprad, Wanna</au><au>Hirano, Norimichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><issue>1</issue><spage>999</spage><epage>1018</epage><pages>999-1018</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>We prove strong and weak convergence theorems for a new resolvent of maximal monotone operators in a Banach space and give an estimate of the convergence rate of the algorithm. Finally, we apply our convergence theorem to the convex minimization problem. The result present in this paper extend and improve the corresponding result of Ibaraki and Takahashi (2007), and Kim and Xu (2005).</abstract><cop>New York</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2009/795432</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2009-01, Vol.2009 (1), p.999-1018
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_659c756977534d66946a9c1a2afdeb4d
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Algorithms
Banach spaces
Mathematics
Studies
title Strong and Weak Convergence of Modified Mann Iteration for New Resolvents of Maximal Monotone Operators in Banach Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20and%20Weak%20Convergence%20of%20Modified%20Mann%20Iteration%20for%20New%20Resolvents%20of%20Maximal%20Monotone%20Operators%20in%20Banach%20Spaces&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Plubtieng,%20Somyot&rft.date=2009-01-01&rft.volume=2009&rft.issue=1&rft.spage=999&rft.epage=1018&rft.pages=999-1018&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2009/795432&rft_dat=%3Cproquest_doaj_%3E2284928731%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525t-7fa3aff233a6730bbc96d45480569984339a2f5a90a80ad794e1a733345771613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855219434&rft_id=info:pmid/&rft_airiti_id=P20160825001_200912_201609010007_201609010007_999_1018&rfr_iscdi=true