Loading…
Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π
Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a compl...
Saved in:
Published in: | The European physical journal. C, Particles and fields Particles and fields, 2018-11, Vol.78 (11), p.1-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10 |
container_issue | 11 |
container_start_page | 1 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 78 |
creator | Jürg Gasser Akaki Rusetsky |
description | Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π . |
doi_str_mv | 10.1140/epjc/s10052-018-6378-8 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78</doaj_id><sourcerecordid>oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d783</originalsourceid><addsrcrecordid>eNqtzDFOwzAYhmELgUQpXAF56Gr6u3Zid0QIRGcYI1l_Yyc4CnGwDYiNiQNwGW4Bd-AkRAj1BEzfq2f4CDnlcMa5hKUbu3qZOECxYsA1K4XSTO-RGZdCsnLi_V1LeUiOUuoAYCVBz8j5Teif_NBSP2TXRuype3jE7MOQJqKLReUy0ir69i5jjOGZimr0k9PPj--3d_H1ekwOGuyTO_nbOdlcXd5eXDMbsDNj9PcYX0xAb34hxNZgzL7unSmLteVqWzZcWdkgbou1Eto2IFQtrdLiP79-AOt-XLk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Jürg Gasser ; Akaki Rusetsky</creator><creatorcontrib>Jürg Gasser ; Akaki Rusetsky</creatorcontrib><description>Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-018-6378-8</identifier><language>eng</language><publisher>SpringerOpen</publisher><ispartof>The European physical journal. C, Particles and fields, 2018-11, Vol.78 (11), p.1-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jürg Gasser</creatorcontrib><creatorcontrib>Akaki Rusetsky</creatorcontrib><title>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</title><title>The European physical journal. C, Particles and fields</title><description>Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .</description><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtzDFOwzAYhmELgUQpXAF56Gr6u3Zid0QIRGcYI1l_Yyc4CnGwDYiNiQNwGW4Bd-AkRAj1BEzfq2f4CDnlcMa5hKUbu3qZOECxYsA1K4XSTO-RGZdCsnLi_V1LeUiOUuoAYCVBz8j5Teif_NBSP2TXRuype3jE7MOQJqKLReUy0ir69i5jjOGZimr0k9PPj--3d_H1ekwOGuyTO_nbOdlcXd5eXDMbsDNj9PcYX0xAb34hxNZgzL7unSmLteVqWzZcWdkgbou1Eto2IFQtrdLiP79-AOt-XLk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jürg Gasser</creator><creator>Akaki Rusetsky</creator><general>SpringerOpen</general><scope>DOA</scope></search><sort><creationdate>20181101</creationdate><title>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</title><author>Jürg Gasser ; Akaki Rusetsky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jürg Gasser</creatorcontrib><creatorcontrib>Akaki Rusetsky</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jürg Gasser</au><au>Akaki Rusetsky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>78</volume><issue>11</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .</abstract><pub>SpringerOpen</pub><doi>10.1140/epjc/s10052-018-6378-8</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2018-11, Vol.78 (11), p.1-10 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
title | Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20integral%20equations%20in%20$$%5Ceta%20%5Crightarrow%203%5Cpi%20$$%20%CE%B7%E2%86%923%CF%80&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=J%C3%BCrg%20Gasser&rft.date=2018-11-01&rft.volume=78&rft.issue=11&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-018-6378-8&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_659d17b6f17d4faab59738df037c4d78%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |