Loading…

Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π

Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a compl...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. C, Particles and fields Particles and fields, 2018-11, Vol.78 (11), p.1-10
Main Authors: Jürg Gasser, Akaki Rusetsky
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue 11
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 78
creator Jürg Gasser
Akaki Rusetsky
description Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .
doi_str_mv 10.1140/epjc/s10052-018-6378-8
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78</doaj_id><sourcerecordid>oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d783</originalsourceid><addsrcrecordid>eNqtzDFOwzAYhmELgUQpXAF56Gr6u3Zid0QIRGcYI1l_Yyc4CnGwDYiNiQNwGW4Bd-AkRAj1BEzfq2f4CDnlcMa5hKUbu3qZOECxYsA1K4XSTO-RGZdCsnLi_V1LeUiOUuoAYCVBz8j5Teif_NBSP2TXRuype3jE7MOQJqKLReUy0ir69i5jjOGZimr0k9PPj--3d_H1ekwOGuyTO_nbOdlcXd5eXDMbsDNj9PcYX0xAb34hxNZgzL7unSmLteVqWzZcWdkgbou1Eto2IFQtrdLiP79-AOt-XLk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Jürg Gasser ; Akaki Rusetsky</creator><creatorcontrib>Jürg Gasser ; Akaki Rusetsky</creatorcontrib><description>Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-018-6378-8</identifier><language>eng</language><publisher>SpringerOpen</publisher><ispartof>The European physical journal. C, Particles and fields, 2018-11, Vol.78 (11), p.1-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jürg Gasser</creatorcontrib><creatorcontrib>Akaki Rusetsky</creatorcontrib><title>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</title><title>The European physical journal. C, Particles and fields</title><description>Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .</description><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtzDFOwzAYhmELgUQpXAF56Gr6u3Zid0QIRGcYI1l_Yyc4CnGwDYiNiQNwGW4Bd-AkRAj1BEzfq2f4CDnlcMa5hKUbu3qZOECxYsA1K4XSTO-RGZdCsnLi_V1LeUiOUuoAYCVBz8j5Teif_NBSP2TXRuype3jE7MOQJqKLReUy0ir69i5jjOGZimr0k9PPj--3d_H1ekwOGuyTO_nbOdlcXd5eXDMbsDNj9PcYX0xAb34hxNZgzL7unSmLteVqWzZcWdkgbou1Eto2IFQtrdLiP79-AOt-XLk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jürg Gasser</creator><creator>Akaki Rusetsky</creator><general>SpringerOpen</general><scope>DOA</scope></search><sort><creationdate>20181101</creationdate><title>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</title><author>Jürg Gasser ; Akaki Rusetsky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jürg Gasser</creatorcontrib><creatorcontrib>Akaki Rusetsky</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jürg Gasser</au><au>Akaki Rusetsky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>78</volume><issue>11</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Abstract A dispersive analysis of $$\eta \rightarrow 3\pi $$ η→3π decays has been performed in the past by many authors. The numerical analysis of the pertinent integral equations is hampered by two technical difficulties: (i) The angular averages of the amplitudes need to be performed along a complicated path in the complex plane. (ii) The averaged amplitudes develop singularities along the path of integration in the dispersive representation of the full amplitudes. It is a delicate affair to handle these singularities properly, and independent checks of the obtained solutions are demanding and time consuming. In the present article, we propose a solution method that avoids these difficulties. It is based on a simple deformation of the path of integration in the dispersive representation (not in the angular average). Numerical solutions are then obtained rather straightforwardly. We expect that the method also works for $$\omega \rightarrow 3\pi $$ ω→3π .</abstract><pub>SpringerOpen</pub><doi>10.1140/epjc/s10052-018-6378-8</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2018-11, Vol.78 (11), p.1-10
issn 1434-6044
1434-6052
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d78
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
title Solving integral equations in $$\eta \rightarrow 3\pi $$ η→3π
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20integral%20equations%20in%20$$%5Ceta%20%5Crightarrow%203%5Cpi%20$$%20%CE%B7%E2%86%923%CF%80&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=J%C3%BCrg%20Gasser&rft.date=2018-11-01&rft.volume=78&rft.issue=11&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-018-6378-8&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_659d17b6f17d4faab59738df037c4d78%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_659d17b6f17d4faab59738df037c4d783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true