Loading…

Framework for Intelligent Swimming Analytics with Wearable Sensors for Stroke Classification

Intelligent approaches in sports using IoT devices to gather data, attempting to optimize athlete’s training and performance, are cutting edge research. Synergies between recent wearable hardware and wireless communication strategies, together with the advances in intelligent algorithms, which are a...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (15), p.5162
Main Authors: Costa, Joana, Silva, Catarina, Santos, Miguel, Fernandes, Telmo, Faria, Sérgio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intelligent approaches in sports using IoT devices to gather data, attempting to optimize athlete’s training and performance, are cutting edge research. Synergies between recent wearable hardware and wireless communication strategies, together with the advances in intelligent algorithms, which are able to perform online pattern recognition and classification with seamless results, are at the front line of high-performance sports coaching. In this work, an intelligent data analytics system for swimmer performance is proposed. The system includes (i) pre-processing of raw signals; (ii) feature representation of wearable sensors and biosensors; (iii) online recognition of the swimming style and turns; and (iv) post-analysis of the performance for coaching decision support, including stroke counting and average speed. The system is supported by wearable inertial (AHRS) and biosensors (heart rate and pulse oximetry) placed on a swimmer’s body. Radio-frequency links are employed to communicate with the heart rate sensor and the station in the vicinity of the swimming pool, where analytics is carried out. Experiments were carried out in a real training setup, including 10 athletes aged 15 to 17 years. This scenario resulted in a set of circa 8000 samples. The experimental results show that the proposed system for intelligent swimming analytics with wearable sensors effectively yields immediate feedback to coaches and swimmers based on real-time data analysis. The best result was achieved with a Random Forest classifier with a macro-averaged F1 of 95.02%. The benefit of the proposed framework was demonstrated by effectively supporting coaches while monitoring the training of several swimmers.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21155162