Loading…
Estimating PM2.5 utilizing multiple linear regression and ANN techniques
The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable...
Saved in:
Published in: | Scientific reports 2023-12, Vol.13 (1), p.22578-22578, Article 22578 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113 |
container_end_page | 22578 |
container_issue | 1 |
container_start_page | 22578 |
container_title | Scientific reports |
container_volume | 13 |
creator | Gulati, Sumita Bansal, Anshul Pal, Ashok Mittal, Nitin Sharma, Abhishek Gared, Fikreselam |
description | The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable predictions. This study aims to address this issue by utilizing correlation coefficients to select the most pertinent input and output variables for an air pollution model. In this work, PM
2.5
concentration is estimated by employing concentrations of sulfur dioxide, nitrogen dioxide, and PM
10
found in the air through the application of Artificial Neural Networks (ANNs). The proposed approach involves the comparison of three ANN models: one trained with the Levenberg–Marquardt algorithm (LM-ANN), another with the Bayesian Regularization algorithm (BR-ANN), and a third with the Scaled Conjugate Gradient algorithm (SCG-ANN). The findings revealed that the LM-ANN model outperforms the other two models and even surpasses the Multiple Linear Regression method. The LM-ANN model yields a higher R
2
value of 0.8164 and a lower RMSE value of 9.5223. |
doi_str_mv | 10.1038/s41598-023-49717-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65ade2ab194c44c1ab355f6ec0e2192b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_65ade2ab194c44c1ab355f6ec0e2192b</doaj_id><sourcerecordid>2904156663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhgdpoaL-AVcDbroZm-9MViJiVfBrUdchyWTGXHKT2yRT0F_fXEeqdmE2-XrOw-G8TXMIwTEEuP-RCaSi7wDCHREc8o7vNLsIENohjNCXd-dvzUHOK1AXRYJAsdtcnufi1qq4MLX3N-iYtnNx3j1v7-vZF7fxtvUuWJXaZKdkc3YxtCoM7entbVuseQzu92zzfvN1VD7bg9d9r3n4ef7r7LK7vru4Oju97gyFfemIHhmmGo4jp0QAig1VSiExcoIxB72AkAui-x4xwbQB40Cp5nQQwEBMIcR7zdXiHaJayU2qzacnGZWTLw8xTVKl4oy3klE1WKQ0FMQQYqDSmNKRWQMsggLp6jpZXJtZr-1gbChJ-Q_Sjz_BPcop_pEQcAwoAdXw_dWQ4nYKRa5dNtZ7FWycs0QC1HAYY7iiR_-hqzinUGe1pTDHgjFSKbRQJsWckx3_dQOB3KYtl7RlTVu-pC15LcJLUa5wmGx6U39S9RdpgauF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903739664</pqid></control><display><type>article</type><title>Estimating PM2.5 utilizing multiple linear regression and ANN techniques</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Gulati, Sumita ; Bansal, Anshul ; Pal, Ashok ; Mittal, Nitin ; Sharma, Abhishek ; Gared, Fikreselam</creator><creatorcontrib>Gulati, Sumita ; Bansal, Anshul ; Pal, Ashok ; Mittal, Nitin ; Sharma, Abhishek ; Gared, Fikreselam</creatorcontrib><description>The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable predictions. This study aims to address this issue by utilizing correlation coefficients to select the most pertinent input and output variables for an air pollution model. In this work, PM
2.5
concentration is estimated by employing concentrations of sulfur dioxide, nitrogen dioxide, and PM
10
found in the air through the application of Artificial Neural Networks (ANNs). The proposed approach involves the comparison of three ANN models: one trained with the Levenberg–Marquardt algorithm (LM-ANN), another with the Bayesian Regularization algorithm (BR-ANN), and a third with the Scaled Conjugate Gradient algorithm (SCG-ANN). The findings revealed that the LM-ANN model outperforms the other two models and even surpasses the Multiple Linear Regression method. The LM-ANN model yields a higher R
2
value of 0.8164 and a lower RMSE value of 9.5223.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-49717-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 704/172 ; Air pollution ; Air quality ; Algorithms ; Bayesian analysis ; Correlation coefficient ; Humanities and Social Sciences ; Mathematical models ; multidisciplinary ; Neural networks ; Nitrogen dioxide ; Outdoor air quality ; Particulate matter ; Predictions ; Regression analysis ; Science ; Science (multidisciplinary) ; Sulfur ; Sulfur dioxide</subject><ispartof>Scientific reports, 2023-12, Vol.13 (1), p.22578-22578, Article 22578</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113</citedby><cites>FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2903739664/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2903739664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Gulati, Sumita</creatorcontrib><creatorcontrib>Bansal, Anshul</creatorcontrib><creatorcontrib>Pal, Ashok</creatorcontrib><creatorcontrib>Mittal, Nitin</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Gared, Fikreselam</creatorcontrib><title>Estimating PM2.5 utilizing multiple linear regression and ANN techniques</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable predictions. This study aims to address this issue by utilizing correlation coefficients to select the most pertinent input and output variables for an air pollution model. In this work, PM
2.5
concentration is estimated by employing concentrations of sulfur dioxide, nitrogen dioxide, and PM
10
found in the air through the application of Artificial Neural Networks (ANNs). The proposed approach involves the comparison of three ANN models: one trained with the Levenberg–Marquardt algorithm (LM-ANN), another with the Bayesian Regularization algorithm (BR-ANN), and a third with the Scaled Conjugate Gradient algorithm (SCG-ANN). The findings revealed that the LM-ANN model outperforms the other two models and even surpasses the Multiple Linear Regression method. The LM-ANN model yields a higher R
2
value of 0.8164 and a lower RMSE value of 9.5223.</description><subject>639/166</subject><subject>704/172</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Correlation coefficient</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Nitrogen dioxide</subject><subject>Outdoor air quality</subject><subject>Particulate matter</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1LHTEUhgdpoaL-AVcDbroZm-9MViJiVfBrUdchyWTGXHKT2yRT0F_fXEeqdmE2-XrOw-G8TXMIwTEEuP-RCaSi7wDCHREc8o7vNLsIENohjNCXd-dvzUHOK1AXRYJAsdtcnufi1qq4MLX3N-iYtnNx3j1v7-vZF7fxtvUuWJXaZKdkc3YxtCoM7entbVuseQzu92zzfvN1VD7bg9d9r3n4ef7r7LK7vru4Oju97gyFfemIHhmmGo4jp0QAig1VSiExcoIxB72AkAui-x4xwbQB40Cp5nQQwEBMIcR7zdXiHaJayU2qzacnGZWTLw8xTVKl4oy3klE1WKQ0FMQQYqDSmNKRWQMsggLp6jpZXJtZr-1gbChJ-Q_Sjz_BPcop_pEQcAwoAdXw_dWQ4nYKRa5dNtZ7FWycs0QC1HAYY7iiR_-hqzinUGe1pTDHgjFSKbRQJsWckx3_dQOB3KYtl7RlTVu-pC15LcJLUa5wmGx6U39S9RdpgauF</recordid><startdate>20231219</startdate><enddate>20231219</enddate><creator>Gulati, Sumita</creator><creator>Bansal, Anshul</creator><creator>Pal, Ashok</creator><creator>Mittal, Nitin</creator><creator>Sharma, Abhishek</creator><creator>Gared, Fikreselam</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20231219</creationdate><title>Estimating PM2.5 utilizing multiple linear regression and ANN techniques</title><author>Gulati, Sumita ; Bansal, Anshul ; Pal, Ashok ; Mittal, Nitin ; Sharma, Abhishek ; Gared, Fikreselam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166</topic><topic>704/172</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Correlation coefficient</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Nitrogen dioxide</topic><topic>Outdoor air quality</topic><topic>Particulate matter</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulati, Sumita</creatorcontrib><creatorcontrib>Bansal, Anshul</creatorcontrib><creatorcontrib>Pal, Ashok</creatorcontrib><creatorcontrib>Mittal, Nitin</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Gared, Fikreselam</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulati, Sumita</au><au>Bansal, Anshul</au><au>Pal, Ashok</au><au>Mittal, Nitin</au><au>Sharma, Abhishek</au><au>Gared, Fikreselam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating PM2.5 utilizing multiple linear regression and ANN techniques</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-12-19</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>22578</spage><epage>22578</epage><pages>22578-22578</pages><artnum>22578</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable predictions. This study aims to address this issue by utilizing correlation coefficients to select the most pertinent input and output variables for an air pollution model. In this work, PM
2.5
concentration is estimated by employing concentrations of sulfur dioxide, nitrogen dioxide, and PM
10
found in the air through the application of Artificial Neural Networks (ANNs). The proposed approach involves the comparison of three ANN models: one trained with the Levenberg–Marquardt algorithm (LM-ANN), another with the Bayesian Regularization algorithm (BR-ANN), and a third with the Scaled Conjugate Gradient algorithm (SCG-ANN). The findings revealed that the LM-ANN model outperforms the other two models and even surpasses the Multiple Linear Regression method. The LM-ANN model yields a higher R
2
value of 0.8164 and a lower RMSE value of 9.5223.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41598-023-49717-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-12, Vol.13 (1), p.22578-22578, Article 22578 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_65ade2ab194c44c1ab355f6ec0e2192b |
source | PubMed (Medline); Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166 704/172 Air pollution Air quality Algorithms Bayesian analysis Correlation coefficient Humanities and Social Sciences Mathematical models multidisciplinary Neural networks Nitrogen dioxide Outdoor air quality Particulate matter Predictions Regression analysis Science Science (multidisciplinary) Sulfur Sulfur dioxide |
title | Estimating PM2.5 utilizing multiple linear regression and ANN techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20PM2.5%20utilizing%20multiple%20linear%20regression%20and%20ANN%20techniques&rft.jtitle=Scientific%20reports&rft.au=Gulati,%20Sumita&rft.date=2023-12-19&rft.volume=13&rft.issue=1&rft.spage=22578&rft.epage=22578&rft.pages=22578-22578&rft.artnum=22578&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-49717-7&rft_dat=%3Cproquest_doaj_%3E2904156663%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-4bf635b1ff7549053c5aaa29f7433708911794b882696bc0fd55b75d90c135113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2903739664&rft_id=info:pmid/&rfr_iscdi=true |