Loading…
Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Me...
Saved in:
Published in: | Applied sciences 2023-09, Vol.13 (17), p.9780 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753 |
container_end_page | |
container_issue | 17 |
container_start_page | 9780 |
container_title | Applied sciences |
container_volume | 13 |
creator | Belter, Jakub Hering, Marek Weichbroth, Paweł |
description | Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field. |
doi_str_mv | 10.3390/app13179780 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b</doaj_id><sourcerecordid>2862223115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753</originalsourceid><addsrcrecordid>eNpNUU1LAzEUDKJgqT35BxY8SjXZZLMbb6X4UWhRtOJFCG-zL3WXdlOTVOm_t19I3-UNwzAzMIRcMnrDuaK3sFwyznKVF_SEdFKayz4XLD89wuekF0JDN6cYLxjtkM-Ji7Vrk6mHBk10fp28eKxqs2PrNvkAj19uFTCZQAszXGAbk7d1iLgId8ngACHWJhnXET3ElcfkFX9q_L0gZxbmAXuH3yXvD_fT4VN__Pw4Gg7GfcOliH3BUiUVUCgLwwswMkObU8EktxVWloqUqixn0mCR5VwxVdqKG1AFQGYxz3iXjPa-lYNGL329AL_WDmq9I5yfafCbhnPUMiutQAYZLblACwVWUooUZSZA8g3ZJVd7r6V33ysMUTdu5dtNfZ0WMk1Tztg28XqvMt6F4NH-pzKqt2voozX4H26YfOM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862223115</pqid></control><display><type>article</type><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</creator><creatorcontrib>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</creatorcontrib><description>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13179780</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Automation ; Efficiency ; Inventory ; Keywords ; Literature reviews ; Manufacturing ; Methods ; motion trajectory prediction ; Order picking ; Robots ; Software ; Supply chains ; systematic literature review ; Systematic review ; warehouse management system ; Warehouses</subject><ispartof>Applied sciences, 2023-09, Vol.13 (17), p.9780</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753</citedby><cites>FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753</cites><orcidid>0000-0002-1645-0941 ; 0009-0005-1262-005X ; 0009-0008-5833-9169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862223115?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862223115?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Belter, Jakub</creatorcontrib><creatorcontrib>Hering, Marek</creatorcontrib><creatorcontrib>Weichbroth, Paweł</creatorcontrib><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><title>Applied sciences</title><description>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Efficiency</subject><subject>Inventory</subject><subject>Keywords</subject><subject>Literature reviews</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>motion trajectory prediction</subject><subject>Order picking</subject><subject>Robots</subject><subject>Software</subject><subject>Supply chains</subject><subject>systematic literature review</subject><subject>Systematic review</subject><subject>warehouse management system</subject><subject>Warehouses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUDKJgqT35BxY8SjXZZLMbb6X4UWhRtOJFCG-zL3WXdlOTVOm_t19I3-UNwzAzMIRcMnrDuaK3sFwyznKVF_SEdFKayz4XLD89wuekF0JDN6cYLxjtkM-Ji7Vrk6mHBk10fp28eKxqs2PrNvkAj19uFTCZQAszXGAbk7d1iLgId8ngACHWJhnXET3ElcfkFX9q_L0gZxbmAXuH3yXvD_fT4VN__Pw4Gg7GfcOliH3BUiUVUCgLwwswMkObU8EktxVWloqUqixn0mCR5VwxVdqKG1AFQGYxz3iXjPa-lYNGL329AL_WDmq9I5yfafCbhnPUMiutQAYZLblACwVWUooUZSZA8g3ZJVd7r6V33ysMUTdu5dtNfZ0WMk1Tztg28XqvMt6F4NH-pzKqt2voozX4H26YfOM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Belter, Jakub</creator><creator>Hering, Marek</creator><creator>Weichbroth, Paweł</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1645-0941</orcidid><orcidid>https://orcid.org/0009-0005-1262-005X</orcidid><orcidid>https://orcid.org/0009-0008-5833-9169</orcidid></search><sort><creationdate>20230901</creationdate><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><author>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Efficiency</topic><topic>Inventory</topic><topic>Keywords</topic><topic>Literature reviews</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>motion trajectory prediction</topic><topic>Order picking</topic><topic>Robots</topic><topic>Software</topic><topic>Supply chains</topic><topic>systematic literature review</topic><topic>Systematic review</topic><topic>warehouse management system</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belter, Jakub</creatorcontrib><creatorcontrib>Hering, Marek</creatorcontrib><creatorcontrib>Weichbroth, Paweł</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belter, Jakub</au><au>Hering, Marek</au><au>Weichbroth, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</atitle><jtitle>Applied sciences</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>17</issue><spage>9780</spage><pages>9780-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13179780</doi><orcidid>https://orcid.org/0000-0002-1645-0941</orcidid><orcidid>https://orcid.org/0009-0005-1262-005X</orcidid><orcidid>https://orcid.org/0009-0008-5833-9169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-09, Vol.13 (17), p.9780 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b |
source | Publicly Available Content Database; Coronavirus Research Database |
subjects | Artificial intelligence Automation Efficiency Inventory Keywords Literature reviews Manufacturing Methods motion trajectory prediction Order picking Robots Software Supply chains systematic literature review Systematic review warehouse management system Warehouses |
title | Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-07T02%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Trajectory%20Prediction%20in%20Warehouse%20Management%20Systems:%20A%20Systematic%20Literature%20Review&rft.jtitle=Applied%20sciences&rft.au=Belter,%20Jakub&rft.date=2023-09-01&rft.volume=13&rft.issue=17&rft.spage=9780&rft.pages=9780-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13179780&rft_dat=%3Cproquest_doaj_%3E2862223115%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-412969a0ab8c38ac65ef704163fdedf042095716ce8573919bfd3ca98aa5fe753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862223115&rft_id=info:pmid/&rfr_iscdi=true |