Loading…

Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review

Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Me...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-09, Vol.13 (17), p.9780
Main Authors: Belter, Jakub, Hering, Marek, Weichbroth, Paweł
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3
cites cdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3
container_end_page
container_issue 17
container_start_page 9780
container_title Applied sciences
container_volume 13
creator Belter, Jakub
Hering, Marek
Weichbroth, Paweł
description Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.
doi_str_mv 10.3390/app13179780
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764264395</galeid><doaj_id>oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b</doaj_id><sourcerecordid>A764264395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</originalsourceid><addsrcrecordid>eNpNkU9rGzEQxUVpocHJqV9gocfiVNLoz25vJrRJwKGlTcilICbakSsTr1xJTvG3rxKHkJnDPB4zjx8MYx8EPwUY-GfcbgUIO9iev2FHklszByXs21f6PTspZc1bDQJ6wY_Y76tUY5q664xr8jXlffcj0xj9kxun7hYz_Um7Qt0VTriiDU21-7UvlTblS7d4llij75axUsa6y9T9pIdI_47Zu4D3hU6e54zdfPt6fXYxX34_vzxbLOdecahzJaH3g_SBazAkexsUl9JagNCbYEfoG68GFYCM1VwHrRu9VOg1cSEJZuzykDsmXLttjhvMe5cwuicj5ZXD3AjvyRl9FxQJ1PwOFAXsaTRGSTJaoYFmztjHQ9Y2p787KtWt0y5PDd_J3kgpQQjdtk4PWytsoXEKqWb0rUfaRJ8mCrH5C9uijYLh8eDT4cDnVEqm8IIpuHt8n3v1PvgPdCKK_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862223115</pqid></control><display><type>article</type><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</creator><creatorcontrib>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</creatorcontrib><description>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13179780</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Automation ; Efficiency ; Forecasts and trends ; Inventory ; Keywords ; Literature reviews ; Machine learning ; Manufacturing ; Methods ; motion trajectory prediction ; Order picking ; Robots ; Software ; Supply chains ; systematic literature review ; Systematic review ; warehouse management system ; Warehouse stores ; Warehouses</subject><ispartof>Applied sciences, 2023-09, Vol.13 (17), p.9780</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</citedby><cites>FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</cites><orcidid>0000-0002-1645-0941 ; 0009-0005-1262-005X ; 0009-0008-5833-9169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862223115/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862223115?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Belter, Jakub</creatorcontrib><creatorcontrib>Hering, Marek</creatorcontrib><creatorcontrib>Weichbroth, Paweł</creatorcontrib><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><title>Applied sciences</title><description>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Efficiency</subject><subject>Forecasts and trends</subject><subject>Inventory</subject><subject>Keywords</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>motion trajectory prediction</subject><subject>Order picking</subject><subject>Robots</subject><subject>Software</subject><subject>Supply chains</subject><subject>systematic literature review</subject><subject>Systematic review</subject><subject>warehouse management system</subject><subject>Warehouse stores</subject><subject>Warehouses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9rGzEQxUVpocHJqV9gocfiVNLoz25vJrRJwKGlTcilICbakSsTr1xJTvG3rxKHkJnDPB4zjx8MYx8EPwUY-GfcbgUIO9iev2FHklszByXs21f6PTspZc1bDQJ6wY_Y76tUY5q664xr8jXlffcj0xj9kxun7hYz_Um7Qt0VTriiDU21-7UvlTblS7d4llij75axUsa6y9T9pIdI_47Zu4D3hU6e54zdfPt6fXYxX34_vzxbLOdecahzJaH3g_SBazAkexsUl9JagNCbYEfoG68GFYCM1VwHrRu9VOg1cSEJZuzykDsmXLttjhvMe5cwuicj5ZXD3AjvyRl9FxQJ1PwOFAXsaTRGSTJaoYFmztjHQ9Y2p787KtWt0y5PDd_J3kgpQQjdtk4PWytsoXEKqWb0rUfaRJ8mCrH5C9uijYLh8eDT4cDnVEqm8IIpuHt8n3v1PvgPdCKK_g</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Belter, Jakub</creator><creator>Hering, Marek</creator><creator>Weichbroth, Paweł</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1645-0941</orcidid><orcidid>https://orcid.org/0009-0005-1262-005X</orcidid><orcidid>https://orcid.org/0009-0008-5833-9169</orcidid></search><sort><creationdate>20230901</creationdate><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><author>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Efficiency</topic><topic>Forecasts and trends</topic><topic>Inventory</topic><topic>Keywords</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>motion trajectory prediction</topic><topic>Order picking</topic><topic>Robots</topic><topic>Software</topic><topic>Supply chains</topic><topic>systematic literature review</topic><topic>Systematic review</topic><topic>warehouse management system</topic><topic>Warehouse stores</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belter, Jakub</creatorcontrib><creatorcontrib>Hering, Marek</creatorcontrib><creatorcontrib>Weichbroth, Paweł</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belter, Jakub</au><au>Hering, Marek</au><au>Weichbroth, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</atitle><jtitle>Applied sciences</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>17</issue><spage>9780</spage><pages>9780-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13179780</doi><orcidid>https://orcid.org/0000-0002-1645-0941</orcidid><orcidid>https://orcid.org/0009-0005-1262-005X</orcidid><orcidid>https://orcid.org/0009-0008-5833-9169</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-09, Vol.13 (17), p.9780
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b
source Publicly Available Content (ProQuest); Coronavirus Research Database
subjects Artificial intelligence
Automation
Efficiency
Forecasts and trends
Inventory
Keywords
Literature reviews
Machine learning
Manufacturing
Methods
motion trajectory prediction
Order picking
Robots
Software
Supply chains
systematic literature review
Systematic review
warehouse management system
Warehouse stores
Warehouses
title Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Trajectory%20Prediction%20in%20Warehouse%20Management%20Systems:%20A%20Systematic%20Literature%20Review&rft.jtitle=Applied%20sciences&rft.au=Belter,%20Jakub&rft.date=2023-09-01&rft.volume=13&rft.issue=17&rft.spage=9780&rft.pages=9780-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13179780&rft_dat=%3Cgale_doaj_%3EA764264395%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862223115&rft_id=info:pmid/&rft_galeid=A764264395&rfr_iscdi=true