Loading…
Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Me...
Saved in:
Published in: | Applied sciences 2023-09, Vol.13 (17), p.9780 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3 |
container_end_page | |
container_issue | 17 |
container_start_page | 9780 |
container_title | Applied sciences |
container_volume | 13 |
creator | Belter, Jakub Hering, Marek Weichbroth, Paweł |
description | Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field. |
doi_str_mv | 10.3390/app13179780 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A764264395</galeid><doaj_id>oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b</doaj_id><sourcerecordid>A764264395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</originalsourceid><addsrcrecordid>eNpNkU9rGzEQxUVpocHJqV9gocfiVNLoz25vJrRJwKGlTcilICbakSsTr1xJTvG3rxKHkJnDPB4zjx8MYx8EPwUY-GfcbgUIO9iev2FHklszByXs21f6PTspZc1bDQJ6wY_Y76tUY5q664xr8jXlffcj0xj9kxun7hYz_Um7Qt0VTriiDU21-7UvlTblS7d4llij75axUsa6y9T9pIdI_47Zu4D3hU6e54zdfPt6fXYxX34_vzxbLOdecahzJaH3g_SBazAkexsUl9JagNCbYEfoG68GFYCM1VwHrRu9VOg1cSEJZuzykDsmXLttjhvMe5cwuicj5ZXD3AjvyRl9FxQJ1PwOFAXsaTRGSTJaoYFmztjHQ9Y2p787KtWt0y5PDd_J3kgpQQjdtk4PWytsoXEKqWb0rUfaRJ8mCrH5C9uijYLh8eDT4cDnVEqm8IIpuHt8n3v1PvgPdCKK_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862223115</pqid></control><display><type>article</type><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</creator><creatorcontrib>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</creatorcontrib><description>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13179780</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial intelligence ; Automation ; Efficiency ; Forecasts and trends ; Inventory ; Keywords ; Literature reviews ; Machine learning ; Manufacturing ; Methods ; motion trajectory prediction ; Order picking ; Robots ; Software ; Supply chains ; systematic literature review ; Systematic review ; warehouse management system ; Warehouse stores ; Warehouses</subject><ispartof>Applied sciences, 2023-09, Vol.13 (17), p.9780</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</citedby><cites>FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</cites><orcidid>0000-0002-1645-0941 ; 0009-0005-1262-005X ; 0009-0008-5833-9169</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862223115/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862223115?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Belter, Jakub</creatorcontrib><creatorcontrib>Hering, Marek</creatorcontrib><creatorcontrib>Weichbroth, Paweł</creatorcontrib><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><title>Applied sciences</title><description>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Efficiency</subject><subject>Forecasts and trends</subject><subject>Inventory</subject><subject>Keywords</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>motion trajectory prediction</subject><subject>Order picking</subject><subject>Robots</subject><subject>Software</subject><subject>Supply chains</subject><subject>systematic literature review</subject><subject>Systematic review</subject><subject>warehouse management system</subject><subject>Warehouse stores</subject><subject>Warehouses</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9rGzEQxUVpocHJqV9gocfiVNLoz25vJrRJwKGlTcilICbakSsTr1xJTvG3rxKHkJnDPB4zjx8MYx8EPwUY-GfcbgUIO9iev2FHklszByXs21f6PTspZc1bDQJ6wY_Y76tUY5q664xr8jXlffcj0xj9kxun7hYz_Um7Qt0VTriiDU21-7UvlTblS7d4llij75axUsa6y9T9pIdI_47Zu4D3hU6e54zdfPt6fXYxX34_vzxbLOdecahzJaH3g_SBazAkexsUl9JagNCbYEfoG68GFYCM1VwHrRu9VOg1cSEJZuzykDsmXLttjhvMe5cwuicj5ZXD3AjvyRl9FxQJ1PwOFAXsaTRGSTJaoYFmztjHQ9Y2p787KtWt0y5PDd_J3kgpQQjdtk4PWytsoXEKqWb0rUfaRJ8mCrH5C9uijYLh8eDT4cDnVEqm8IIpuHt8n3v1PvgPdCKK_g</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Belter, Jakub</creator><creator>Hering, Marek</creator><creator>Weichbroth, Paweł</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1645-0941</orcidid><orcidid>https://orcid.org/0009-0005-1262-005X</orcidid><orcidid>https://orcid.org/0009-0008-5833-9169</orcidid></search><sort><creationdate>20230901</creationdate><title>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</title><author>Belter, Jakub ; Hering, Marek ; Weichbroth, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Efficiency</topic><topic>Forecasts and trends</topic><topic>Inventory</topic><topic>Keywords</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>motion trajectory prediction</topic><topic>Order picking</topic><topic>Robots</topic><topic>Software</topic><topic>Supply chains</topic><topic>systematic literature review</topic><topic>Systematic review</topic><topic>warehouse management system</topic><topic>Warehouse stores</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belter, Jakub</creatorcontrib><creatorcontrib>Hering, Marek</creatorcontrib><creatorcontrib>Weichbroth, Paweł</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belter, Jakub</au><au>Hering, Marek</au><au>Weichbroth, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review</atitle><jtitle>Applied sciences</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>17</issue><spage>9780</spage><pages>9780-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Background: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016 to 2023. The review was driven by a protocol that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering the Warehouse Management Systems, five categories of motion trajectory prediction methods have been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also provides the research community with an overview of the state-of-the-art methods, which can further stimulate researchers and practitioners to enhance existing and develop new ones in this field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13179780</doi><orcidid>https://orcid.org/0000-0002-1645-0941</orcidid><orcidid>https://orcid.org/0009-0005-1262-005X</orcidid><orcidid>https://orcid.org/0009-0008-5833-9169</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-09, Vol.13 (17), p.9780 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_65bf4e1a50b34efa8ed6642e654a630b |
source | Publicly Available Content (ProQuest); Coronavirus Research Database |
subjects | Artificial intelligence Automation Efficiency Forecasts and trends Inventory Keywords Literature reviews Machine learning Manufacturing Methods motion trajectory prediction Order picking Robots Software Supply chains systematic literature review Systematic review warehouse management system Warehouse stores Warehouses |
title | Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Trajectory%20Prediction%20in%20Warehouse%20Management%20Systems:%20A%20Systematic%20Literature%20Review&rft.jtitle=Applied%20sciences&rft.au=Belter,%20Jakub&rft.date=2023-09-01&rft.volume=13&rft.issue=17&rft.spage=9780&rft.pages=9780-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13179780&rft_dat=%3Cgale_doaj_%3EA764264395%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-4238c92cf0536e287f40227733f86f7d38009534f3e67505f5513824ac5e012e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862223115&rft_id=info:pmid/&rft_galeid=A764264395&rfr_iscdi=true |